L(s) = 1 | − 13-s + 2·17-s + 25-s + 2·29-s − 49-s − 2·53-s + 2·61-s − 2·101-s + 2·113-s + ⋯ |
L(s) = 1 | − 13-s + 2·17-s + 25-s + 2·29-s − 49-s − 2·53-s + 2·61-s − 2·101-s + 2·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.182017424\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.182017424\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 5 | \( ( 1 - T )( 1 + T ) \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 17 | \( ( 1 - T )^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( ( 1 - T )( 1 + T ) \) |
| 29 | \( ( 1 - T )^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( ( 1 + T )^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( ( 1 - T )^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.656955690253039770308071705721, −8.509244514392409736767076060643, −7.907418238542288715463769777006, −7.08906119093741135118384416472, −6.28888456993578558991317303464, −5.26289914734159044212161307119, −4.68037945037740256630262234013, −3.41668235937234969096213356514, −2.64732708754186443775809146998, −1.18285865140344046637603977780,
1.18285865140344046637603977780, 2.64732708754186443775809146998, 3.41668235937234969096213356514, 4.68037945037740256630262234013, 5.26289914734159044212161307119, 6.28888456993578558991317303464, 7.08906119093741135118384416472, 7.907418238542288715463769777006, 8.509244514392409736767076060643, 9.656955690253039770308071705721