L(s) = 1 | − 13-s + 2·17-s + 25-s + 2·29-s − 49-s − 2·53-s + 2·61-s − 2·101-s + 2·113-s + ⋯ |
L(s) = 1 | − 13-s + 2·17-s + 25-s + 2·29-s − 49-s − 2·53-s + 2·61-s − 2·101-s + 2·113-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(1872s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
1872
= 24⋅32⋅13
|
Sign: |
1
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ1872(415,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 1872, ( :0), 1)
|
Particular Values
L(21) |
≈ |
1.182017424 |
L(21) |
≈ |
1.182017424 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+T |
good | 5 | (1−T)(1+T) |
| 7 | 1+T2 |
| 11 | 1+T2 |
| 17 | (1−T)2 |
| 19 | 1+T2 |
| 23 | (1−T)(1+T) |
| 29 | (1−T)2 |
| 31 | 1+T2 |
| 37 | (1−T)(1+T) |
| 41 | (1−T)(1+T) |
| 43 | (1−T)(1+T) |
| 47 | 1+T2 |
| 53 | (1+T)2 |
| 59 | 1+T2 |
| 61 | (1−T)2 |
| 67 | 1+T2 |
| 71 | 1+T2 |
| 73 | (1−T)(1+T) |
| 79 | (1−T)(1+T) |
| 83 | 1+T2 |
| 89 | (1−T)(1+T) |
| 97 | (1−T)(1+T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.656955690253039770308071705721, −8.509244514392409736767076060643, −7.907418238542288715463769777006, −7.08906119093741135118384416472, −6.28888456993578558991317303464, −5.26289914734159044212161307119, −4.68037945037740256630262234013, −3.41668235937234969096213356514, −2.64732708754186443775809146998, −1.18285865140344046637603977780,
1.18285865140344046637603977780, 2.64732708754186443775809146998, 3.41668235937234969096213356514, 4.68037945037740256630262234013, 5.26289914734159044212161307119, 6.28888456993578558991317303464, 7.08906119093741135118384416472, 7.907418238542288715463769777006, 8.509244514392409736767076060643, 9.656955690253039770308071705721