Properties

Label 1872.415
Modulus $1872$
Conductor $52$
Order $2$
Real yes
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1872, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,0,0,1]))
 
pari: [g,chi] = znchar(Mod(415,1872))
 

Basic properties

Modulus: \(1872\)
Conductor: \(52\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from \(\chi_{52}(51,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 1872.i

\(\chi_{1872}(415,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{-13}) \)

Values on generators

\((703,469,209,145)\) → \((-1,1,1,-1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 1872 }(415, a) \) \(-1\)\(1\)\(-1\)\(1\)\(1\)\(1\)\(1\)\(-1\)\(1\)\(1\)\(1\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 1872 }(415,a) \;\) at \(\;a = \) e.g. 2