L(s) = 1 | − i·2-s − 2i·3-s − 4-s − 2·6-s + i·7-s + i·8-s − 9-s + 3·11-s + 2i·12-s + 14-s + 16-s + 3i·17-s + i·18-s + 6·19-s + 2·21-s − 3i·22-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 1.15i·3-s − 0.5·4-s − 0.816·6-s + 0.377i·7-s + 0.353i·8-s − 0.333·9-s + 0.904·11-s + 0.577i·12-s + 0.267·14-s + 0.250·16-s + 0.727i·17-s + 0.235i·18-s + 1.37·19-s + 0.436·21-s − 0.639i·22-s + ⋯ |
Λ(s)=(=(1850s/2ΓC(s)L(s)(−0.447+0.894i)Λ(2−s)
Λ(s)=(=(1850s/2ΓC(s+1/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
1850
= 2⋅52⋅37
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
14.7723 |
Root analytic conductor: |
3.84347 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1850(149,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1850, ( :1/2), −0.447+0.894i)
|
Particular Values
L(1) |
≈ |
1.847174187 |
L(21) |
≈ |
1.847174187 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 5 | 1 |
| 37 | 1+iT |
good | 3 | 1+2iT−3T2 |
| 7 | 1−iT−7T2 |
| 11 | 1−3T+11T2 |
| 13 | 1−13T2 |
| 17 | 1−3iT−17T2 |
| 19 | 1−6T+19T2 |
| 23 | 1+2iT−23T2 |
| 29 | 1−3T+29T2 |
| 31 | 1−3T+31T2 |
| 41 | 1−3T+41T2 |
| 43 | 1−iT−43T2 |
| 47 | 1−4iT−47T2 |
| 53 | 1+13iT−53T2 |
| 59 | 1+59T2 |
| 61 | 1+15T+61T2 |
| 67 | 1−67T2 |
| 71 | 1+2T+71T2 |
| 73 | 1−73T2 |
| 79 | 1−8T+79T2 |
| 83 | 1−4iT−83T2 |
| 89 | 1−18T+89T2 |
| 97 | 1+7iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.016878666747083129441069379438, −8.199623803560296612358939184017, −7.49469940747098485113384477479, −6.58290769860461660036032458039, −5.94186547462529206669173945191, −4.82798522752783592425277029904, −3.80332166023422941910161875015, −2.76612750318482204677382224436, −1.74917883815201447932811504155, −0.901249338822713350354124349918,
1.10782098922167989188044175594, 3.03803063902427134660923114549, 3.90074513308399965392210705678, 4.62444299874089903314541316567, 5.33841908241949538187458525476, 6.28700624941458639152996448709, 7.19778619434054481492140435772, 7.79810753547288837223010982022, 9.075300239469897935271370439783, 9.269990576951351258150809431634