Properties

Label 2-1850-5.4-c1-0-25
Degree $2$
Conductor $1850$
Sign $-0.447 - 0.894i$
Analytic cond. $14.7723$
Root an. cond. $3.84347$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s + 2i·3-s − 4-s − 2·6-s i·7-s i·8-s − 9-s + 3·11-s − 2i·12-s + 14-s + 16-s − 3i·17-s i·18-s + 6·19-s + 2·21-s + 3i·22-s + ⋯
L(s)  = 1  + 0.707i·2-s + 1.15i·3-s − 0.5·4-s − 0.816·6-s − 0.377i·7-s − 0.353i·8-s − 0.333·9-s + 0.904·11-s − 0.577i·12-s + 0.267·14-s + 0.250·16-s − 0.727i·17-s − 0.235i·18-s + 1.37·19-s + 0.436·21-s + 0.639i·22-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1850\)    =    \(2 \cdot 5^{2} \cdot 37\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(14.7723\)
Root analytic conductor: \(3.84347\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1850} (149, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1850,\ (\ :1/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.847174187\)
\(L(\frac12)\) \(\approx\) \(1.847174187\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - iT \)
5 \( 1 \)
37 \( 1 - iT \)
good3 \( 1 - 2iT - 3T^{2} \)
7 \( 1 + iT - 7T^{2} \)
11 \( 1 - 3T + 11T^{2} \)
13 \( 1 - 13T^{2} \)
17 \( 1 + 3iT - 17T^{2} \)
19 \( 1 - 6T + 19T^{2} \)
23 \( 1 - 2iT - 23T^{2} \)
29 \( 1 - 3T + 29T^{2} \)
31 \( 1 - 3T + 31T^{2} \)
41 \( 1 - 3T + 41T^{2} \)
43 \( 1 + iT - 43T^{2} \)
47 \( 1 + 4iT - 47T^{2} \)
53 \( 1 - 13iT - 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 15T + 61T^{2} \)
67 \( 1 - 67T^{2} \)
71 \( 1 + 2T + 71T^{2} \)
73 \( 1 - 73T^{2} \)
79 \( 1 - 8T + 79T^{2} \)
83 \( 1 + 4iT - 83T^{2} \)
89 \( 1 - 18T + 89T^{2} \)
97 \( 1 - 7iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.269990576951351258150809431634, −9.075300239469897935271370439783, −7.79810753547288837223010982022, −7.19778619434054481492140435772, −6.28700624941458639152996448709, −5.33841908241949538187458525476, −4.62444299874089903314541316567, −3.90074513308399965392210705678, −3.03803063902427134660923114549, −1.10782098922167989188044175594, 0.901249338822713350354124349918, 1.74917883815201447932811504155, 2.76612750318482204677382224436, 3.80332166023422941910161875015, 4.82798522752783592425277029904, 5.94186547462529206669173945191, 6.58290769860461660036032458039, 7.49469940747098485113384477479, 8.199623803560296612358939184017, 9.016878666747083129441069379438

Graph of the $Z$-function along the critical line