Properties

Label 2-182-1.1-c7-0-34
Degree $2$
Conductor $182$
Sign $1$
Analytic cond. $56.8540$
Root an. cond. $7.54016$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s + 91.2·3-s + 64·4-s + 141.·5-s + 730.·6-s + 343·7-s + 512·8-s + 6.14e3·9-s + 1.12e3·10-s + 8.25e3·11-s + 5.84e3·12-s − 2.19e3·13-s + 2.74e3·14-s + 1.28e4·15-s + 4.09e3·16-s − 1.51e4·17-s + 4.91e4·18-s − 4.88e4·19-s + 9.03e3·20-s + 3.13e4·21-s + 6.60e4·22-s − 6.95e4·23-s + 4.67e4·24-s − 5.81e4·25-s − 1.75e4·26-s + 3.61e5·27-s + 2.19e4·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.95·3-s + 0.5·4-s + 0.505·5-s + 1.38·6-s + 0.377·7-s + 0.353·8-s + 2.81·9-s + 0.357·10-s + 1.87·11-s + 0.976·12-s − 0.277·13-s + 0.267·14-s + 0.985·15-s + 0.250·16-s − 0.747·17-s + 1.98·18-s − 1.63·19-s + 0.252·20-s + 0.737·21-s + 1.32·22-s − 1.19·23-s + 0.690·24-s − 0.744·25-s − 0.196·26-s + 3.53·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(182\)    =    \(2 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(56.8540\)
Root analytic conductor: \(7.54016\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 182,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(8.239307782\)
\(L(\frac12)\) \(\approx\) \(8.239307782\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8T \)
7 \( 1 - 343T \)
13 \( 1 + 2.19e3T \)
good3 \( 1 - 91.2T + 2.18e3T^{2} \)
5 \( 1 - 141.T + 7.81e4T^{2} \)
11 \( 1 - 8.25e3T + 1.94e7T^{2} \)
17 \( 1 + 1.51e4T + 4.10e8T^{2} \)
19 \( 1 + 4.88e4T + 8.93e8T^{2} \)
23 \( 1 + 6.95e4T + 3.40e9T^{2} \)
29 \( 1 + 2.18e5T + 1.72e10T^{2} \)
31 \( 1 + 1.50e4T + 2.75e10T^{2} \)
37 \( 1 - 1.00e5T + 9.49e10T^{2} \)
41 \( 1 - 3.10e5T + 1.94e11T^{2} \)
43 \( 1 + 2.10e5T + 2.71e11T^{2} \)
47 \( 1 + 3.90e5T + 5.06e11T^{2} \)
53 \( 1 - 4.37e5T + 1.17e12T^{2} \)
59 \( 1 - 2.67e6T + 2.48e12T^{2} \)
61 \( 1 + 1.00e5T + 3.14e12T^{2} \)
67 \( 1 - 1.82e5T + 6.06e12T^{2} \)
71 \( 1 - 2.05e6T + 9.09e12T^{2} \)
73 \( 1 + 4.29e6T + 1.10e13T^{2} \)
79 \( 1 + 4.58e6T + 1.92e13T^{2} \)
83 \( 1 + 2.22e6T + 2.71e13T^{2} \)
89 \( 1 - 2.68e6T + 4.42e13T^{2} \)
97 \( 1 + 7.64e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.50965907334257064198666575219, −10.07051207881664588984736431128, −9.201233472199975339510471542499, −8.413246210025467837963938219689, −7.25078116023393760012660606621, −6.24514985717501031534652190936, −4.27351368644735083037385276936, −3.80290852840397713565171616099, −2.22615756762275061223509841324, −1.70931481254472736448362039874, 1.70931481254472736448362039874, 2.22615756762275061223509841324, 3.80290852840397713565171616099, 4.27351368644735083037385276936, 6.24514985717501031534652190936, 7.25078116023393760012660606621, 8.413246210025467837963938219689, 9.201233472199975339510471542499, 10.07051207881664588984736431128, 11.50965907334257064198666575219

Graph of the $Z$-function along the critical line