Properties

Label 2-182-1.1-c7-0-14
Degree $2$
Conductor $182$
Sign $1$
Analytic cond. $56.8540$
Root an. cond. $7.54016$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s − 46.6·3-s + 64·4-s + 142.·5-s − 373.·6-s + 343·7-s + 512·8-s − 12.4·9-s + 1.13e3·10-s + 3.05e3·11-s − 2.98e3·12-s − 2.19e3·13-s + 2.74e3·14-s − 6.64e3·15-s + 4.09e3·16-s + 7.37e3·17-s − 99.2·18-s + 1.35e4·19-s + 9.11e3·20-s − 1.59e4·21-s + 2.44e4·22-s − 5.85e4·23-s − 2.38e4·24-s − 5.78e4·25-s − 1.75e4·26-s + 1.02e5·27-s + 2.19e4·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.997·3-s + 0.5·4-s + 0.509·5-s − 0.705·6-s + 0.377·7-s + 0.353·8-s − 0.00567·9-s + 0.360·10-s + 0.692·11-s − 0.498·12-s − 0.277·13-s + 0.267·14-s − 0.508·15-s + 0.250·16-s + 0.364·17-s − 0.00401·18-s + 0.452·19-s + 0.254·20-s − 0.376·21-s + 0.489·22-s − 1.00·23-s − 0.352·24-s − 0.740·25-s − 0.196·26-s + 1.00·27-s + 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 182 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(182\)    =    \(2 \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(56.8540\)
Root analytic conductor: \(7.54016\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 182,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(2.695176645\)
\(L(\frac12)\) \(\approx\) \(2.695176645\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8T \)
7 \( 1 - 343T \)
13 \( 1 + 2.19e3T \)
good3 \( 1 + 46.6T + 2.18e3T^{2} \)
5 \( 1 - 142.T + 7.81e4T^{2} \)
11 \( 1 - 3.05e3T + 1.94e7T^{2} \)
17 \( 1 - 7.37e3T + 4.10e8T^{2} \)
19 \( 1 - 1.35e4T + 8.93e8T^{2} \)
23 \( 1 + 5.85e4T + 3.40e9T^{2} \)
29 \( 1 - 1.13e5T + 1.72e10T^{2} \)
31 \( 1 + 1.07e5T + 2.75e10T^{2} \)
37 \( 1 - 5.74e5T + 9.49e10T^{2} \)
41 \( 1 + 4.17e5T + 1.94e11T^{2} \)
43 \( 1 + 2.39e5T + 2.71e11T^{2} \)
47 \( 1 - 4.84e5T + 5.06e11T^{2} \)
53 \( 1 - 1.31e6T + 1.17e12T^{2} \)
59 \( 1 - 2.94e6T + 2.48e12T^{2} \)
61 \( 1 - 2.95e6T + 3.14e12T^{2} \)
67 \( 1 + 2.24e6T + 6.06e12T^{2} \)
71 \( 1 - 1.46e6T + 9.09e12T^{2} \)
73 \( 1 - 3.71e6T + 1.10e13T^{2} \)
79 \( 1 - 5.53e6T + 1.92e13T^{2} \)
83 \( 1 - 7.55e6T + 2.71e13T^{2} \)
89 \( 1 + 7.25e5T + 4.42e13T^{2} \)
97 \( 1 - 6.62e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.71700824984798385558349273202, −10.57465439066821353626587435731, −9.614953099566873478873026185388, −8.128532697640278027255642973377, −6.78865807606497018935408511755, −5.88065439368856265437880284898, −5.13699248837923956242039371766, −3.88925893801486566075744711178, −2.26781511233192656949616039918, −0.864945111191744958991543793801, 0.864945111191744958991543793801, 2.26781511233192656949616039918, 3.88925893801486566075744711178, 5.13699248837923956242039371766, 5.88065439368856265437880284898, 6.78865807606497018935408511755, 8.128532697640278027255642973377, 9.614953099566873478873026185388, 10.57465439066821353626587435731, 11.71700824984798385558349273202

Graph of the $Z$-function along the critical line