| L(s)  = 1 | + 3-s     − 3·5-s         + 9-s     − 5·11-s     + 13-s     − 3·15-s         − 8·19-s         − 2·23-s     + 4·25-s     + 27-s     + 9·29-s     − 5·31-s     − 5·33-s         − 6·37-s     + 39-s     − 2·41-s     + 2·43-s     − 3·45-s     + 8·47-s     − 7·49-s         + 53-s     + 15·55-s     − 8·57-s     − 9·59-s     − 6·61-s         − 3·65-s     + 8·67-s  + ⋯ | 
| L(s)  = 1 | + 0.577·3-s     − 1.34·5-s         + 1/3·9-s     − 1.50·11-s     + 0.277·13-s     − 0.774·15-s         − 1.83·19-s         − 0.417·23-s     + 4/5·25-s     + 0.192·27-s     + 1.67·29-s     − 0.898·31-s     − 0.870·33-s         − 0.986·37-s     + 0.160·39-s     − 0.312·41-s     + 0.304·43-s     − 0.447·45-s     + 1.16·47-s     − 49-s         + 0.137·53-s     + 2.02·55-s     − 1.05·57-s     − 1.17·59-s     − 0.768·61-s         − 0.372·65-s     + 0.977·67-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 180336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 - T \) |  | 
|  | 13 | \( 1 - T \) |  | 
|  | 17 | \( 1 \) |  | 
| good | 5 | \( 1 + 3 T + p T^{2} \) | 1.5.d | 
|  | 7 | \( 1 + p T^{2} \) | 1.7.a | 
|  | 11 | \( 1 + 5 T + p T^{2} \) | 1.11.f | 
|  | 19 | \( 1 + 8 T + p T^{2} \) | 1.19.i | 
|  | 23 | \( 1 + 2 T + p T^{2} \) | 1.23.c | 
|  | 29 | \( 1 - 9 T + p T^{2} \) | 1.29.aj | 
|  | 31 | \( 1 + 5 T + p T^{2} \) | 1.31.f | 
|  | 37 | \( 1 + 6 T + p T^{2} \) | 1.37.g | 
|  | 41 | \( 1 + 2 T + p T^{2} \) | 1.41.c | 
|  | 43 | \( 1 - 2 T + p T^{2} \) | 1.43.ac | 
|  | 47 | \( 1 - 8 T + p T^{2} \) | 1.47.ai | 
|  | 53 | \( 1 - T + p T^{2} \) | 1.53.ab | 
|  | 59 | \( 1 + 9 T + p T^{2} \) | 1.59.j | 
|  | 61 | \( 1 + 6 T + p T^{2} \) | 1.61.g | 
|  | 67 | \( 1 - 8 T + p T^{2} \) | 1.67.ai | 
|  | 71 | \( 1 + 12 T + p T^{2} \) | 1.71.m | 
|  | 73 | \( 1 + T + p T^{2} \) | 1.73.b | 
|  | 79 | \( 1 - 11 T + p T^{2} \) | 1.79.al | 
|  | 83 | \( 1 - 12 T + p T^{2} \) | 1.83.am | 
|  | 89 | \( 1 + 16 T + p T^{2} \) | 1.89.q | 
|  | 97 | \( 1 - 5 T + p T^{2} \) | 1.97.af | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.53633705084005, −12.75642508579166, −12.47426748101642, −12.18478960491844, −11.51060827155102, −10.81094491551711, −10.68900253310252, −10.28238811971093, −9.568197644310726, −8.906911853515460, −8.492579166265828, −8.077006879949911, −7.869792445130969, −7.196919625818748, −6.784466226007397, −6.148605866921669, −5.535149242196575, −4.819172177132830, −4.430434201588524, −3.973810896461757, −3.320708293632964, −2.888649500796152, −2.241316065595900, −1.664174289217390, −0.5831776231074953, 0, 
0.5831776231074953, 1.664174289217390, 2.241316065595900, 2.888649500796152, 3.320708293632964, 3.973810896461757, 4.430434201588524, 4.819172177132830, 5.535149242196575, 6.148605866921669, 6.784466226007397, 7.196919625818748, 7.869792445130969, 8.077006879949911, 8.492579166265828, 8.906911853515460, 9.568197644310726, 10.28238811971093, 10.68900253310252, 10.81094491551711, 11.51060827155102, 12.18478960491844, 12.47426748101642, 12.75642508579166, 13.53633705084005
