Properties

Label 2-180336-1.1-c1-0-32
Degree $2$
Conductor $180336$
Sign $-1$
Analytic cond. $1439.99$
Root an. cond. $37.9472$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·5-s + 9-s − 5·11-s + 13-s − 3·15-s − 8·19-s − 2·23-s + 4·25-s + 27-s + 9·29-s − 5·31-s − 5·33-s − 6·37-s + 39-s − 2·41-s + 2·43-s − 3·45-s + 8·47-s − 7·49-s + 53-s + 15·55-s − 8·57-s − 9·59-s − 6·61-s − 3·65-s + 8·67-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.34·5-s + 1/3·9-s − 1.50·11-s + 0.277·13-s − 0.774·15-s − 1.83·19-s − 0.417·23-s + 4/5·25-s + 0.192·27-s + 1.67·29-s − 0.898·31-s − 0.870·33-s − 0.986·37-s + 0.160·39-s − 0.312·41-s + 0.304·43-s − 0.447·45-s + 1.16·47-s − 49-s + 0.137·53-s + 2.02·55-s − 1.05·57-s − 1.17·59-s − 0.768·61-s − 0.372·65-s + 0.977·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 180336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(180336\)    =    \(2^{4} \cdot 3 \cdot 13 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1439.99\)
Root analytic conductor: \(37.9472\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 180336,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 - T \)
17 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 5 T + p T^{2} \) 1.11.f
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 + 9 T + p T^{2} \) 1.59.j
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.53633705084005, −12.75642508579166, −12.47426748101642, −12.18478960491844, −11.51060827155102, −10.81094491551711, −10.68900253310252, −10.28238811971093, −9.568197644310726, −8.906911853515460, −8.492579166265828, −8.077006879949911, −7.869792445130969, −7.196919625818748, −6.784466226007397, −6.148605866921669, −5.535149242196575, −4.819172177132830, −4.430434201588524, −3.973810896461757, −3.320708293632964, −2.888649500796152, −2.241316065595900, −1.664174289217390, −0.5831776231074953, 0, 0.5831776231074953, 1.664174289217390, 2.241316065595900, 2.888649500796152, 3.320708293632964, 3.973810896461757, 4.430434201588524, 4.819172177132830, 5.535149242196575, 6.148605866921669, 6.784466226007397, 7.196919625818748, 7.869792445130969, 8.077006879949911, 8.492579166265828, 8.906911853515460, 9.568197644310726, 10.28238811971093, 10.68900253310252, 10.81094491551711, 11.51060827155102, 12.18478960491844, 12.47426748101642, 12.75642508579166, 13.53633705084005

Graph of the $Z$-function along the critical line