L(s) = 1 | + 5i·7-s − 14·11-s − i·13-s − 46i·17-s − 19·19-s − 46i·23-s + 14·29-s + 133·31-s + 258i·37-s − 84·41-s + 167i·43-s − 410i·47-s + 318·49-s + 456i·53-s − 194·59-s + ⋯ |
L(s) = 1 | + 0.269i·7-s − 0.383·11-s − 0.0213i·13-s − 0.656i·17-s − 0.229·19-s − 0.417i·23-s + 0.0896·29-s + 0.770·31-s + 1.14i·37-s − 0.319·41-s + 0.592i·43-s − 1.27i·47-s + 0.927·49-s + 1.18i·53-s − 0.428·59-s + ⋯ |
Λ(s)=(=(1800s/2ΓC(s)L(s)(−0.447−0.894i)Λ(4−s)
Λ(s)=(=(1800s/2ΓC(s+3/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
1800
= 23⋅32⋅52
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
106.203 |
Root analytic conductor: |
10.3055 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1800(649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1800, ( :3/2), −0.447−0.894i)
|
Particular Values
L(2) |
≈ |
1.006866187 |
L(21) |
≈ |
1.006866187 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1 |
good | 7 | 1−5iT−343T2 |
| 11 | 1+14T+1.33e3T2 |
| 13 | 1+iT−2.19e3T2 |
| 17 | 1+46iT−4.91e3T2 |
| 19 | 1+19T+6.85e3T2 |
| 23 | 1+46iT−1.21e4T2 |
| 29 | 1−14T+2.43e4T2 |
| 31 | 1−133T+2.97e4T2 |
| 37 | 1−258iT−5.06e4T2 |
| 41 | 1+84T+6.89e4T2 |
| 43 | 1−167iT−7.95e4T2 |
| 47 | 1+410iT−1.03e5T2 |
| 53 | 1−456iT−1.48e5T2 |
| 59 | 1+194T+2.05e5T2 |
| 61 | 1+17T+2.26e5T2 |
| 67 | 1−653iT−3.00e5T2 |
| 71 | 1+828T+3.57e5T2 |
| 73 | 1+570iT−3.89e5T2 |
| 79 | 1−552T+4.93e5T2 |
| 83 | 1−142iT−5.71e5T2 |
| 89 | 1+1.10e3T+7.04e5T2 |
| 97 | 1−841iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.082133900033455591715144742662, −8.433450826693909415053468609062, −7.62286755274128728592367266603, −6.78660211770914979109623115383, −5.97713656241324522250851016807, −5.07628384929594705147211156638, −4.32212075797690691869831929344, −3.12784551227140321830914791744, −2.34057615370752309759200190601, −1.03859485927879428294446752631,
0.23136645742809323516223790514, 1.50150977452343665718071761984, 2.59410291728196429053821993872, 3.65745635718767971466762032472, 4.48464602346167380237537251035, 5.45846272535351158481225122956, 6.23860887190096125143912679361, 7.13212757852434674979840553204, 7.88061089006616393460637474878, 8.617190674675728636225261170691