Properties

Label 2-1800-5.4-c3-0-48
Degree $2$
Conductor $1800$
Sign $-0.447 + 0.894i$
Analytic cond. $106.203$
Root an. cond. $10.3055$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5i·7-s − 14·11-s + i·13-s + 46i·17-s − 19·19-s + 46i·23-s + 14·29-s + 133·31-s − 258i·37-s − 84·41-s − 167i·43-s + 410i·47-s + 318·49-s − 456i·53-s − 194·59-s + ⋯
L(s)  = 1  − 0.269i·7-s − 0.383·11-s + 0.0213i·13-s + 0.656i·17-s − 0.229·19-s + 0.417i·23-s + 0.0896·29-s + 0.770·31-s − 1.14i·37-s − 0.319·41-s − 0.592i·43-s + 1.27i·47-s + 0.927·49-s − 1.18i·53-s − 0.428·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1800 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2}\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(106.203\)
Root analytic conductor: \(10.3055\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1800} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1800,\ (\ :3/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.006866187\)
\(L(\frac12)\) \(\approx\) \(1.006866187\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 5iT - 343T^{2} \)
11 \( 1 + 14T + 1.33e3T^{2} \)
13 \( 1 - iT - 2.19e3T^{2} \)
17 \( 1 - 46iT - 4.91e3T^{2} \)
19 \( 1 + 19T + 6.85e3T^{2} \)
23 \( 1 - 46iT - 1.21e4T^{2} \)
29 \( 1 - 14T + 2.43e4T^{2} \)
31 \( 1 - 133T + 2.97e4T^{2} \)
37 \( 1 + 258iT - 5.06e4T^{2} \)
41 \( 1 + 84T + 6.89e4T^{2} \)
43 \( 1 + 167iT - 7.95e4T^{2} \)
47 \( 1 - 410iT - 1.03e5T^{2} \)
53 \( 1 + 456iT - 1.48e5T^{2} \)
59 \( 1 + 194T + 2.05e5T^{2} \)
61 \( 1 + 17T + 2.26e5T^{2} \)
67 \( 1 + 653iT - 3.00e5T^{2} \)
71 \( 1 + 828T + 3.57e5T^{2} \)
73 \( 1 - 570iT - 3.89e5T^{2} \)
79 \( 1 - 552T + 4.93e5T^{2} \)
83 \( 1 + 142iT - 5.71e5T^{2} \)
89 \( 1 + 1.10e3T + 7.04e5T^{2} \)
97 \( 1 + 841iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.617190674675728636225261170691, −7.88061089006616393460637474878, −7.13212757852434674979840553204, −6.23860887190096125143912679361, −5.45846272535351158481225122956, −4.48464602346167380237537251035, −3.65745635718767971466762032472, −2.59410291728196429053821993872, −1.50150977452343665718071761984, −0.23136645742809323516223790514, 1.03859485927879428294446752631, 2.34057615370752309759200190601, 3.12784551227140321830914791744, 4.32212075797690691869831929344, 5.07628384929594705147211156638, 5.97713656241324522250851016807, 6.78660211770914979109623115383, 7.62286755274128728592367266603, 8.433450826693909415053468609062, 9.082133900033455591715144742662

Graph of the $Z$-function along the critical line