L(s) = 1 | − i·2-s − 4-s − i·5-s + i·8-s − 10-s + 16-s + 2i·17-s + i·20-s − 25-s − i·32-s + 2·34-s + 40-s − 49-s + i·50-s − 2i·53-s + ⋯ |
L(s) = 1 | − i·2-s − 4-s − i·5-s + i·8-s − 10-s + 16-s + 2i·17-s + i·20-s − 25-s − i·32-s + 2·34-s + 40-s − 49-s + i·50-s − 2i·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 180 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6199840944\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6199840944\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 + iT \) |
good | 7 | \( 1 + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 - 2iT - T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + 2iT - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + 2T + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.68773874131481316135968972332, −11.77201509376005350156308605147, −10.70856199700068145277697392096, −9.768152071362591591297198359402, −8.731949602901659574138655814886, −8.002705591916857497167492234651, −6.00544160009276436343889004620, −4.78133270384470936549343138359, −3.66834307526012773911986557907, −1.72822679618767786561111164747,
3.07697035633363634318314595901, 4.65105749693461699670374546515, 5.94207158086714460524284264874, 7.01138108804813254061843343097, 7.70984593560360609597004373017, 9.098082573711693085294217039423, 9.951066944493501011919944634999, 11.12243734817267578579130886343, 12.24786515957334543450342310498, 13.61416047276907475538878389672