Properties

Label 2-18-9.2-c6-0-4
Degree $2$
Conductor $18$
Sign $0.435 + 0.900i$
Analytic cond. $4.14097$
Root an. cond. $2.03493$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4.89 − 2.82i)2-s + (25.6 − 8.30i)3-s + (15.9 + 27.7i)4-s + (−9.39 + 5.42i)5-s + (−149. − 32.0i)6-s + (322. − 557. i)7-s − 181. i·8-s + (591. − 426. i)9-s + 61.3·10-s + (−1.05e3 − 611. i)11-s + (641. + 579. i)12-s + (1.16e3 + 2.01e3i)13-s + (−3.15e3 + 1.82e3i)14-s + (−196. + 217. i)15-s + (−512. + 886. i)16-s + 3.38e3i·17-s + ⋯
L(s)  = 1  + (−0.612 − 0.353i)2-s + (0.951 − 0.307i)3-s + (0.249 + 0.433i)4-s + (−0.0751 + 0.0433i)5-s + (−0.691 − 0.148i)6-s + (0.938 − 1.62i)7-s − 0.353i·8-s + (0.810 − 0.585i)9-s + 0.0613·10-s + (−0.795 − 0.459i)11-s + (0.371 + 0.335i)12-s + (0.529 + 0.917i)13-s + (−1.14 + 0.663i)14-s + (−0.0581 + 0.0643i)15-s + (−0.125 + 0.216i)16-s + 0.688i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.435 + 0.900i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (0.435 + 0.900i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18\)    =    \(2 \cdot 3^{2}\)
Sign: $0.435 + 0.900i$
Analytic conductor: \(4.14097\)
Root analytic conductor: \(2.03493\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{18} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 18,\ (\ :3),\ 0.435 + 0.900i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(1.30134 - 0.816198i\)
\(L(\frac12)\) \(\approx\) \(1.30134 - 0.816198i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (4.89 + 2.82i)T \)
3 \( 1 + (-25.6 + 8.30i)T \)
good5 \( 1 + (9.39 - 5.42i)T + (7.81e3 - 1.35e4i)T^{2} \)
7 \( 1 + (-322. + 557. i)T + (-5.88e4 - 1.01e5i)T^{2} \)
11 \( 1 + (1.05e3 + 611. i)T + (8.85e5 + 1.53e6i)T^{2} \)
13 \( 1 + (-1.16e3 - 2.01e3i)T + (-2.41e6 + 4.18e6i)T^{2} \)
17 \( 1 - 3.38e3iT - 2.41e7T^{2} \)
19 \( 1 - 6.23e3T + 4.70e7T^{2} \)
23 \( 1 + (1.24e4 - 7.18e3i)T + (7.40e7 - 1.28e8i)T^{2} \)
29 \( 1 + (-1.17e4 - 6.78e3i)T + (2.97e8 + 5.15e8i)T^{2} \)
31 \( 1 + (4.39e3 + 7.60e3i)T + (-4.43e8 + 7.68e8i)T^{2} \)
37 \( 1 + 2.78e4T + 2.56e9T^{2} \)
41 \( 1 + (4.79e4 - 2.76e4i)T + (2.37e9 - 4.11e9i)T^{2} \)
43 \( 1 + (2.69e4 - 4.66e4i)T + (-3.16e9 - 5.47e9i)T^{2} \)
47 \( 1 + (-1.52e5 - 8.80e4i)T + (5.38e9 + 9.33e9i)T^{2} \)
53 \( 1 + 8.39e4iT - 2.21e10T^{2} \)
59 \( 1 + (-3.05e5 + 1.76e5i)T + (2.10e10 - 3.65e10i)T^{2} \)
61 \( 1 + (8.33e4 - 1.44e5i)T + (-2.57e10 - 4.46e10i)T^{2} \)
67 \( 1 + (-4.52e4 - 7.83e4i)T + (-4.52e10 + 7.83e10i)T^{2} \)
71 \( 1 - 4.29e5iT - 1.28e11T^{2} \)
73 \( 1 - 2.74e5T + 1.51e11T^{2} \)
79 \( 1 + (1.63e5 - 2.82e5i)T + (-1.21e11 - 2.10e11i)T^{2} \)
83 \( 1 + (8.58e5 + 4.95e5i)T + (1.63e11 + 2.83e11i)T^{2} \)
89 \( 1 + 5.38e5iT - 4.96e11T^{2} \)
97 \( 1 + (-4.29e4 + 7.44e4i)T + (-4.16e11 - 7.21e11i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.39362139472225840713865577452, −15.94984681057312767040374797794, −14.19766451854885609312429074702, −13.35437430747913765655275502238, −11.37167682607086716879820466026, −10.04134438017136674673503354559, −8.301251528714429114827107632503, −7.30463858938699683081063075740, −3.82220532046763172225376006567, −1.42489293160621109759278876731, 2.36328460336228856892955483412, 5.29840352800090307521949783263, 7.86653001350429968364917711616, 8.755304089846000449083736004119, 10.24405208308614589571577438940, 12.09364499384252336866868448324, 13.99120802944588996407320190901, 15.34613871577669982270178831846, 15.80690421979813048849326903126, 18.05464821131698736934918990294

Graph of the $Z$-function along the critical line