L(s) = 1 | + (−4.89 − 2.82i)2-s + (25.6 − 8.30i)3-s + (15.9 + 27.7i)4-s + (−9.39 + 5.42i)5-s + (−149. − 32.0i)6-s + (322. − 557. i)7-s − 181. i·8-s + (591. − 426. i)9-s + 61.3·10-s + (−1.05e3 − 611. i)11-s + (641. + 579. i)12-s + (1.16e3 + 2.01e3i)13-s + (−3.15e3 + 1.82e3i)14-s + (−196. + 217. i)15-s + (−512. + 886. i)16-s + 3.38e3i·17-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.951 − 0.307i)3-s + (0.249 + 0.433i)4-s + (−0.0751 + 0.0433i)5-s + (−0.691 − 0.148i)6-s + (0.938 − 1.62i)7-s − 0.353i·8-s + (0.810 − 0.585i)9-s + 0.0613·10-s + (−0.795 − 0.459i)11-s + (0.371 + 0.335i)12-s + (0.529 + 0.917i)13-s + (−1.14 + 0.663i)14-s + (−0.0581 + 0.0643i)15-s + (−0.125 + 0.216i)16-s + 0.688i·17-s + ⋯ |
Λ(s)=(=(18s/2ΓC(s)L(s)(0.435+0.900i)Λ(7−s)
Λ(s)=(=(18s/2ΓC(s+3)L(s)(0.435+0.900i)Λ(1−s)
Degree: |
2 |
Conductor: |
18
= 2⋅32
|
Sign: |
0.435+0.900i
|
Analytic conductor: |
4.14097 |
Root analytic conductor: |
2.03493 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ18(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 18, ( :3), 0.435+0.900i)
|
Particular Values
L(27) |
≈ |
1.30134−0.816198i |
L(21) |
≈ |
1.30134−0.816198i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(4.89+2.82i)T |
| 3 | 1+(−25.6+8.30i)T |
good | 5 | 1+(9.39−5.42i)T+(7.81e3−1.35e4i)T2 |
| 7 | 1+(−322.+557.i)T+(−5.88e4−1.01e5i)T2 |
| 11 | 1+(1.05e3+611.i)T+(8.85e5+1.53e6i)T2 |
| 13 | 1+(−1.16e3−2.01e3i)T+(−2.41e6+4.18e6i)T2 |
| 17 | 1−3.38e3iT−2.41e7T2 |
| 19 | 1−6.23e3T+4.70e7T2 |
| 23 | 1+(1.24e4−7.18e3i)T+(7.40e7−1.28e8i)T2 |
| 29 | 1+(−1.17e4−6.78e3i)T+(2.97e8+5.15e8i)T2 |
| 31 | 1+(4.39e3+7.60e3i)T+(−4.43e8+7.68e8i)T2 |
| 37 | 1+2.78e4T+2.56e9T2 |
| 41 | 1+(4.79e4−2.76e4i)T+(2.37e9−4.11e9i)T2 |
| 43 | 1+(2.69e4−4.66e4i)T+(−3.16e9−5.47e9i)T2 |
| 47 | 1+(−1.52e5−8.80e4i)T+(5.38e9+9.33e9i)T2 |
| 53 | 1+8.39e4iT−2.21e10T2 |
| 59 | 1+(−3.05e5+1.76e5i)T+(2.10e10−3.65e10i)T2 |
| 61 | 1+(8.33e4−1.44e5i)T+(−2.57e10−4.46e10i)T2 |
| 67 | 1+(−4.52e4−7.83e4i)T+(−4.52e10+7.83e10i)T2 |
| 71 | 1−4.29e5iT−1.28e11T2 |
| 73 | 1−2.74e5T+1.51e11T2 |
| 79 | 1+(1.63e5−2.82e5i)T+(−1.21e11−2.10e11i)T2 |
| 83 | 1+(8.58e5+4.95e5i)T+(1.63e11+2.83e11i)T2 |
| 89 | 1+5.38e5iT−4.96e11T2 |
| 97 | 1+(−4.29e4+7.44e4i)T+(−4.16e11−7.21e11i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.39362139472225840713865577452, −15.94984681057312767040374797794, −14.19766451854885609312429074702, −13.35437430747913765655275502238, −11.37167682607086716879820466026, −10.04134438017136674673503354559, −8.301251528714429114827107632503, −7.30463858938699683081063075740, −3.82220532046763172225376006567, −1.42489293160621109759278876731,
2.36328460336228856892955483412, 5.29840352800090307521949783263, 7.86653001350429968364917711616, 8.755304089846000449083736004119, 10.24405208308614589571577438940, 12.09364499384252336866868448324, 13.99120802944588996407320190901, 15.34613871577669982270178831846, 15.80690421979813048849326903126, 18.05464821131698736934918990294