L(s) = 1 | + (4.89 + 2.82i)2-s + (−23.6 + 13.0i)3-s + (15.9 + 27.7i)4-s + (−95.8 + 55.3i)5-s + (−152. − 3.16i)6-s + (−163. + 282. i)7-s + 181. i·8-s + (390. − 615. i)9-s − 626.·10-s + (541. + 312. i)11-s + (−739. − 447. i)12-s + (1.01e3 + 1.75e3i)13-s + (−1.59e3 + 923. i)14-s + (1.54e3 − 2.55e3i)15-s + (−512. + 886. i)16-s − 4.12e3i·17-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (−0.876 + 0.481i)3-s + (0.249 + 0.433i)4-s + (−0.766 + 0.442i)5-s + (−0.706 − 0.0146i)6-s + (−0.475 + 0.823i)7-s + 0.353i·8-s + (0.535 − 0.844i)9-s − 0.626·10-s + (0.407 + 0.235i)11-s + (−0.427 − 0.258i)12-s + (0.461 + 0.799i)13-s + (−0.582 + 0.336i)14-s + (0.458 − 0.757i)15-s + (−0.125 + 0.216i)16-s − 0.839i·17-s + ⋯ |
Λ(s)=(=(18s/2ΓC(s)L(s)(−0.738−0.673i)Λ(7−s)
Λ(s)=(=(18s/2ΓC(s+3)L(s)(−0.738−0.673i)Λ(1−s)
Degree: |
2 |
Conductor: |
18
= 2⋅32
|
Sign: |
−0.738−0.673i
|
Analytic conductor: |
4.14097 |
Root analytic conductor: |
2.03493 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ18(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 18, ( :3), −0.738−0.673i)
|
Particular Values
L(27) |
≈ |
0.421310+1.08697i |
L(21) |
≈ |
0.421310+1.08697i |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−4.89−2.82i)T |
| 3 | 1+(23.6−13.0i)T |
good | 5 | 1+(95.8−55.3i)T+(7.81e3−1.35e4i)T2 |
| 7 | 1+(163.−282.i)T+(−5.88e4−1.01e5i)T2 |
| 11 | 1+(−541.−312.i)T+(8.85e5+1.53e6i)T2 |
| 13 | 1+(−1.01e3−1.75e3i)T+(−2.41e6+4.18e6i)T2 |
| 17 | 1+4.12e3iT−2.41e7T2 |
| 19 | 1−1.21e4T+4.70e7T2 |
| 23 | 1+(1.85e4−1.07e4i)T+(7.40e7−1.28e8i)T2 |
| 29 | 1+(2.14e4+1.23e4i)T+(2.97e8+5.15e8i)T2 |
| 31 | 1+(−2.02e4−3.51e4i)T+(−4.43e8+7.68e8i)T2 |
| 37 | 1+3.00e4T+2.56e9T2 |
| 41 | 1+(−5.12e4+2.96e4i)T+(2.37e9−4.11e9i)T2 |
| 43 | 1+(−4.39e4+7.61e4i)T+(−3.16e9−5.47e9i)T2 |
| 47 | 1+(−1.12e5−6.48e4i)T+(5.38e9+9.33e9i)T2 |
| 53 | 1+1.65e5iT−2.21e10T2 |
| 59 | 1+(−4.61e4+2.66e4i)T+(2.10e10−3.65e10i)T2 |
| 61 | 1+(−1.33e5+2.31e5i)T+(−2.57e10−4.46e10i)T2 |
| 67 | 1+(−2.03e5−3.52e5i)T+(−4.52e10+7.83e10i)T2 |
| 71 | 1−1.86e5iT−1.28e11T2 |
| 73 | 1+2.42e5T+1.51e11T2 |
| 79 | 1+(−6.31e4+1.09e5i)T+(−1.21e11−2.10e11i)T2 |
| 83 | 1+(5.97e4+3.44e4i)T+(1.63e11+2.83e11i)T2 |
| 89 | 1−4.13e5iT−4.96e11T2 |
| 97 | 1+(4.89e5−8.47e5i)T+(−4.16e11−7.21e11i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.69789604301638132233114662574, −15.93907958824787144746024713795, −15.74543957640731671612848904290, −14.06070429600773594131927022633, −12.08647730904914928012726851240, −11.50432953680973197061555607137, −9.478926970833758556453354135415, −7.14167281862408199451551996203, −5.61324880855561358044482459906, −3.73828622670048338695051379995,
0.75577935722495958755642441221, 4.02785149678213105018757182993, 5.95698820449372778167748373641, 7.69664809858457341670088372738, 10.29121891108836585047701171291, 11.61459622390617229864328116969, 12.65553618662750616231382745911, 13.81601456177163850825466937850, 15.77217395051018090421217787271, 16.68731846217994426617589859863