Properties

Label 2-18-9.2-c6-0-1
Degree $2$
Conductor $18$
Sign $-0.738 - 0.673i$
Analytic cond. $4.14097$
Root an. cond. $2.03493$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4.89 + 2.82i)2-s + (−23.6 + 13.0i)3-s + (15.9 + 27.7i)4-s + (−95.8 + 55.3i)5-s + (−152. − 3.16i)6-s + (−163. + 282. i)7-s + 181. i·8-s + (390. − 615. i)9-s − 626.·10-s + (541. + 312. i)11-s + (−739. − 447. i)12-s + (1.01e3 + 1.75e3i)13-s + (−1.59e3 + 923. i)14-s + (1.54e3 − 2.55e3i)15-s + (−512. + 886. i)16-s − 4.12e3i·17-s + ⋯
L(s)  = 1  + (0.612 + 0.353i)2-s + (−0.876 + 0.481i)3-s + (0.249 + 0.433i)4-s + (−0.766 + 0.442i)5-s + (−0.706 − 0.0146i)6-s + (−0.475 + 0.823i)7-s + 0.353i·8-s + (0.535 − 0.844i)9-s − 0.626·10-s + (0.407 + 0.235i)11-s + (−0.427 − 0.258i)12-s + (0.461 + 0.799i)13-s + (−0.582 + 0.336i)14-s + (0.458 − 0.757i)15-s + (−0.125 + 0.216i)16-s − 0.839i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.738 - 0.673i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.738 - 0.673i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18\)    =    \(2 \cdot 3^{2}\)
Sign: $-0.738 - 0.673i$
Analytic conductor: \(4.14097\)
Root analytic conductor: \(2.03493\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{18} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 18,\ (\ :3),\ -0.738 - 0.673i)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(0.421310 + 1.08697i\)
\(L(\frac12)\) \(\approx\) \(0.421310 + 1.08697i\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-4.89 - 2.82i)T \)
3 \( 1 + (23.6 - 13.0i)T \)
good5 \( 1 + (95.8 - 55.3i)T + (7.81e3 - 1.35e4i)T^{2} \)
7 \( 1 + (163. - 282. i)T + (-5.88e4 - 1.01e5i)T^{2} \)
11 \( 1 + (-541. - 312. i)T + (8.85e5 + 1.53e6i)T^{2} \)
13 \( 1 + (-1.01e3 - 1.75e3i)T + (-2.41e6 + 4.18e6i)T^{2} \)
17 \( 1 + 4.12e3iT - 2.41e7T^{2} \)
19 \( 1 - 1.21e4T + 4.70e7T^{2} \)
23 \( 1 + (1.85e4 - 1.07e4i)T + (7.40e7 - 1.28e8i)T^{2} \)
29 \( 1 + (2.14e4 + 1.23e4i)T + (2.97e8 + 5.15e8i)T^{2} \)
31 \( 1 + (-2.02e4 - 3.51e4i)T + (-4.43e8 + 7.68e8i)T^{2} \)
37 \( 1 + 3.00e4T + 2.56e9T^{2} \)
41 \( 1 + (-5.12e4 + 2.96e4i)T + (2.37e9 - 4.11e9i)T^{2} \)
43 \( 1 + (-4.39e4 + 7.61e4i)T + (-3.16e9 - 5.47e9i)T^{2} \)
47 \( 1 + (-1.12e5 - 6.48e4i)T + (5.38e9 + 9.33e9i)T^{2} \)
53 \( 1 + 1.65e5iT - 2.21e10T^{2} \)
59 \( 1 + (-4.61e4 + 2.66e4i)T + (2.10e10 - 3.65e10i)T^{2} \)
61 \( 1 + (-1.33e5 + 2.31e5i)T + (-2.57e10 - 4.46e10i)T^{2} \)
67 \( 1 + (-2.03e5 - 3.52e5i)T + (-4.52e10 + 7.83e10i)T^{2} \)
71 \( 1 - 1.86e5iT - 1.28e11T^{2} \)
73 \( 1 + 2.42e5T + 1.51e11T^{2} \)
79 \( 1 + (-6.31e4 + 1.09e5i)T + (-1.21e11 - 2.10e11i)T^{2} \)
83 \( 1 + (5.97e4 + 3.44e4i)T + (1.63e11 + 2.83e11i)T^{2} \)
89 \( 1 - 4.13e5iT - 4.96e11T^{2} \)
97 \( 1 + (4.89e5 - 8.47e5i)T + (-4.16e11 - 7.21e11i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.69789604301638132233114662574, −15.93907958824787144746024713795, −15.74543957640731671612848904290, −14.06070429600773594131927022633, −12.08647730904914928012726851240, −11.50432953680973197061555607137, −9.478926970833758556453354135415, −7.14167281862408199451551996203, −5.61324880855561358044482459906, −3.73828622670048338695051379995, 0.75577935722495958755642441221, 4.02785149678213105018757182993, 5.95698820449372778167748373641, 7.69664809858457341670088372738, 10.29121891108836585047701171291, 11.61459622390617229864328116969, 12.65553618662750616231382745911, 13.81601456177163850825466937850, 15.77217395051018090421217787271, 16.68731846217994426617589859863

Graph of the $Z$-function along the critical line