L(s) = 1 | − 0.347i·2-s + (0.621 + 0.621i)3-s + 1.87·4-s + (1.65 + 1.65i)5-s + (0.215 − 0.215i)6-s + (1.32 − 1.32i)7-s − 1.34i·8-s − 2.22i·9-s + (0.576 − 0.576i)10-s + (−3.58 + 3.58i)11-s + (1.16 + 1.16i)12-s − 4.71·13-s + (−0.461 − 0.461i)14-s + 2.06i·15-s + 3.29·16-s + ⋯ |
L(s) = 1 | − 0.245i·2-s + (0.359 + 0.359i)3-s + 0.939·4-s + (0.742 + 0.742i)5-s + (0.0881 − 0.0881i)6-s + (0.502 − 0.502i)7-s − 0.476i·8-s − 0.742i·9-s + (0.182 − 0.182i)10-s + (−1.07 + 1.07i)11-s + (0.337 + 0.337i)12-s − 1.30·13-s + (−0.123 − 0.123i)14-s + 0.532i·15-s + 0.822·16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.993 - 0.115i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.993 - 0.115i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.85765 + 0.108040i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.85765 + 0.108040i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 \) |
good | 2 | \( 1 + 0.347iT - 2T^{2} \) |
| 3 | \( 1 + (-0.621 - 0.621i)T + 3iT^{2} \) |
| 5 | \( 1 + (-1.65 - 1.65i)T + 5iT^{2} \) |
| 7 | \( 1 + (-1.32 + 1.32i)T - 7iT^{2} \) |
| 11 | \( 1 + (3.58 - 3.58i)T - 11iT^{2} \) |
| 13 | \( 1 + 4.71T + 13T^{2} \) |
| 19 | \( 1 + 0.347iT - 19T^{2} \) |
| 23 | \( 1 + (1.25 - 1.25i)T - 23iT^{2} \) |
| 29 | \( 1 + (1.57 + 1.57i)T + 29iT^{2} \) |
| 31 | \( 1 + (-1.37 - 1.37i)T + 31iT^{2} \) |
| 37 | \( 1 + (4.36 + 4.36i)T + 37iT^{2} \) |
| 41 | \( 1 + (3.65 - 3.65i)T - 41iT^{2} \) |
| 43 | \( 1 + 1.47iT - 43T^{2} \) |
| 47 | \( 1 - 8.53T + 47T^{2} \) |
| 53 | \( 1 - 10.4iT - 53T^{2} \) |
| 59 | \( 1 - 5.00iT - 59T^{2} \) |
| 61 | \( 1 + (-0.130 + 0.130i)T - 61iT^{2} \) |
| 67 | \( 1 + 2.44T + 67T^{2} \) |
| 71 | \( 1 + (7.01 + 7.01i)T + 71iT^{2} \) |
| 73 | \( 1 + (7.70 + 7.70i)T + 73iT^{2} \) |
| 79 | \( 1 + (-3.13 + 3.13i)T - 79iT^{2} \) |
| 83 | \( 1 + 13.5iT - 83T^{2} \) |
| 89 | \( 1 - 6.32T + 89T^{2} \) |
| 97 | \( 1 + (6.55 + 6.55i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.85554510280896340661121780202, −10.41252824670765703708937492115, −10.34759570719898394922599425127, −9.318652362766941196590078609444, −7.63498909549842704601932422252, −7.11581907244156335436678883302, −5.93482784816783034335056807985, −4.53822253862207448820520952543, −2.98205803462285372685353381582, −2.07923753969527503083449173672,
1.89342529358154101837870604884, 2.75762471061991721058792954617, 5.15671641773779622846779659050, 5.56231200961679371106834565293, 7.01980533216017261119160156114, 8.017540571378965133723695484553, 8.595524710236535081972235477269, 9.981178755454422593048254422848, 10.85096243579771065331863205692, 11.85020377426192721440389639582