L(s) = 1 | + 1.30·2-s − 2.30·3-s − 0.302·4-s + 1.30·5-s − 3·6-s − 3.30·7-s − 3·8-s + 2.30·9-s + 1.69·10-s − 3·11-s + 0.697·12-s + 0.302·13-s − 4.30·14-s − 3·15-s − 3.30·16-s + 3.00·18-s − 4.90·19-s − 0.394·20-s + 7.60·21-s − 3.90·22-s + 1.30·23-s + 6.90·24-s − 3.30·25-s + 0.394·26-s + 1.60·27-s + 1.00·28-s + 0.908·29-s + ⋯ |
L(s) = 1 | + 0.921·2-s − 1.32·3-s − 0.151·4-s + 0.582·5-s − 1.22·6-s − 1.24·7-s − 1.06·8-s + 0.767·9-s + 0.536·10-s − 0.904·11-s + 0.201·12-s + 0.0839·13-s − 1.14·14-s − 0.774·15-s − 0.825·16-s + 0.707·18-s − 1.12·19-s − 0.0882·20-s + 1.65·21-s − 0.833·22-s + 0.271·23-s + 1.41·24-s − 0.660·25-s + 0.0773·26-s + 0.308·27-s + 0.188·28-s + 0.168·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 17 | \( 1 \) |
good | 2 | \( 1 - 1.30T + 2T^{2} \) |
| 3 | \( 1 + 2.30T + 3T^{2} \) |
| 5 | \( 1 - 1.30T + 5T^{2} \) |
| 7 | \( 1 + 3.30T + 7T^{2} \) |
| 11 | \( 1 + 3T + 11T^{2} \) |
| 13 | \( 1 - 0.302T + 13T^{2} \) |
| 19 | \( 1 + 4.90T + 19T^{2} \) |
| 23 | \( 1 - 1.30T + 23T^{2} \) |
| 29 | \( 1 - 0.908T + 29T^{2} \) |
| 31 | \( 1 - 3.60T + 31T^{2} \) |
| 37 | \( 1 - 6.60T + 37T^{2} \) |
| 41 | \( 1 + 6T + 41T^{2} \) |
| 43 | \( 1 + 9.60T + 43T^{2} \) |
| 47 | \( 1 - 3T + 47T^{2} \) |
| 53 | \( 1 - 12.9T + 53T^{2} \) |
| 59 | \( 1 - 6T + 59T^{2} \) |
| 61 | \( 1 + 12.8T + 61T^{2} \) |
| 67 | \( 1 - 5.39T + 67T^{2} \) |
| 71 | \( 1 + 11.2T + 71T^{2} \) |
| 73 | \( 1 + 7.60T + 73T^{2} \) |
| 79 | \( 1 - 3.21T + 79T^{2} \) |
| 83 | \( 1 + 15.5T + 83T^{2} \) |
| 89 | \( 1 + 11.2T + 89T^{2} \) |
| 97 | \( 1 - 0.0916T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.60367985821463823244346054712, −10.42231942033974084781417603774, −9.799363438053403660695541504236, −8.559202217182966254539085010493, −6.76858648086498028472084861223, −6.04512824238977001307688316152, −5.40445165971595095953734956029, −4.30459118293172938390897972138, −2.84594240855371215500396978547, 0,
2.84594240855371215500396978547, 4.30459118293172938390897972138, 5.40445165971595095953734956029, 6.04512824238977001307688316152, 6.76858648086498028472084861223, 8.559202217182966254539085010493, 9.799363438053403660695541504236, 10.42231942033974084781417603774, 11.60367985821463823244346054712