Properties

Label 2-17856-1.1-c1-0-48
Degree $2$
Conductor $17856$
Sign $-1$
Analytic cond. $142.580$
Root an. cond. $11.9407$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3·11-s + 13-s − 3·17-s + 19-s + 2·23-s − 4·25-s + 2·29-s + 31-s + 2·37-s − 4·43-s + 7·47-s − 7·49-s − 3·55-s + 6·59-s + 9·61-s + 65-s + 3·67-s − 71-s − 8·73-s − 79-s − 5·83-s − 3·85-s + 6·89-s + 95-s − 7·97-s + 101-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.904·11-s + 0.277·13-s − 0.727·17-s + 0.229·19-s + 0.417·23-s − 4/5·25-s + 0.371·29-s + 0.179·31-s + 0.328·37-s − 0.609·43-s + 1.02·47-s − 49-s − 0.404·55-s + 0.781·59-s + 1.15·61-s + 0.124·65-s + 0.366·67-s − 0.118·71-s − 0.936·73-s − 0.112·79-s − 0.548·83-s − 0.325·85-s + 0.635·89-s + 0.102·95-s − 0.710·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17856 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17856 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17856\)    =    \(2^{6} \cdot 3^{2} \cdot 31\)
Sign: $-1$
Analytic conductor: \(142.580\)
Root analytic conductor: \(11.9407\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 17856,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
31 \( 1 - T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 9 T + p T^{2} \) 1.61.aj
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 5 T + p T^{2} \) 1.83.f
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.98539506467212, −15.62690684515709, −15.04471536008820, −14.41431503897725, −13.80093671396152, −13.30064400123886, −12.96720460455346, −12.27893571275368, −11.51429395728937, −11.16339371782538, −10.39302174794895, −10.00005816298966, −9.381187124642371, −8.682872208030064, −8.197572711154195, −7.509436684258750, −6.874436355144633, −6.221450693550554, −5.590081645856324, −5.016145507533342, −4.308350035209268, −3.519112074049666, −2.678621299971479, −2.114054547331342, −1.132629448043231, 0, 1.132629448043231, 2.114054547331342, 2.678621299971479, 3.519112074049666, 4.308350035209268, 5.016145507533342, 5.590081645856324, 6.221450693550554, 6.874436355144633, 7.509436684258750, 8.197572711154195, 8.682872208030064, 9.381187124642371, 10.00005816298966, 10.39302174794895, 11.16339371782538, 11.51429395728937, 12.27893571275368, 12.96720460455346, 13.30064400123886, 13.80093671396152, 14.41431503897725, 15.04471536008820, 15.62690684515709, 15.98539506467212

Graph of the $Z$-function along the critical line