L(s) = 1 | + (0.686 − 1.23i)2-s + (1.72 − 1.72i)3-s + (−1.05 − 1.69i)4-s + (0.893 + 0.893i)5-s + (−0.949 − 3.32i)6-s + 2.98i·7-s + (−2.82 + 0.141i)8-s − 2.97i·9-s + (1.71 − 0.491i)10-s + (0.707 + 0.707i)11-s + (−4.76 − 1.10i)12-s + (−3.01 + 3.01i)13-s + (3.69 + 2.05i)14-s + 3.08·15-s + (−1.76 + 3.58i)16-s − 6.89·17-s + ⋯ |
L(s) = 1 | + (0.485 − 0.874i)2-s + (0.997 − 0.997i)3-s + (−0.528 − 0.848i)4-s + (0.399 + 0.399i)5-s + (−0.387 − 1.35i)6-s + 1.12i·7-s + (−0.998 + 0.0498i)8-s − 0.990i·9-s + (0.543 − 0.155i)10-s + (0.213 + 0.213i)11-s + (−1.37 − 0.319i)12-s + (−0.836 + 0.836i)13-s + (0.987 + 0.548i)14-s + 0.797·15-s + (−0.441 + 0.897i)16-s − 1.67·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0643 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0643 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.24582 - 1.32871i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.24582 - 1.32871i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.686 + 1.23i)T \) |
| 11 | \( 1 + (-0.707 - 0.707i)T \) |
good | 3 | \( 1 + (-1.72 + 1.72i)T - 3iT^{2} \) |
| 5 | \( 1 + (-0.893 - 0.893i)T + 5iT^{2} \) |
| 7 | \( 1 - 2.98iT - 7T^{2} \) |
| 13 | \( 1 + (3.01 - 3.01i)T - 13iT^{2} \) |
| 17 | \( 1 + 6.89T + 17T^{2} \) |
| 19 | \( 1 + (-2.03 + 2.03i)T - 19iT^{2} \) |
| 23 | \( 1 + 1.49iT - 23T^{2} \) |
| 29 | \( 1 + (-4.14 + 4.14i)T - 29iT^{2} \) |
| 31 | \( 1 - 1.31T + 31T^{2} \) |
| 37 | \( 1 + (5.93 + 5.93i)T + 37iT^{2} \) |
| 41 | \( 1 + 7.06iT - 41T^{2} \) |
| 43 | \( 1 + (-4.04 - 4.04i)T + 43iT^{2} \) |
| 47 | \( 1 - 5.17T + 47T^{2} \) |
| 53 | \( 1 + (-5.66 - 5.66i)T + 53iT^{2} \) |
| 59 | \( 1 + (3.49 + 3.49i)T + 59iT^{2} \) |
| 61 | \( 1 + (9.54 - 9.54i)T - 61iT^{2} \) |
| 67 | \( 1 + (9.71 - 9.71i)T - 67iT^{2} \) |
| 71 | \( 1 + 6.31iT - 71T^{2} \) |
| 73 | \( 1 - 0.614iT - 73T^{2} \) |
| 79 | \( 1 - 4.27T + 79T^{2} \) |
| 83 | \( 1 + (-10.0 + 10.0i)T - 83iT^{2} \) |
| 89 | \( 1 + 8.30iT - 89T^{2} \) |
| 97 | \( 1 + 12.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.38590735691898438273642780639, −11.88505520770658338534254085905, −10.56049547781826065551650926169, −9.187651422618060523321095278239, −8.802100707488329497289442385652, −7.13097221524921946569901627972, −6.10405427086635877474949698739, −4.51539129929294874218604040203, −2.59724017618102480365786837999, −2.16573423032044620567132649621,
3.11467363920941982765449226178, 4.23506793504067099525347261647, 5.14344183307855974043668680200, 6.76282714872086456593680194083, 7.890417972069713928131887313920, 8.871098725815509449181883181410, 9.680996325710419557671846249666, 10.70179471617157393551268365876, 12.32590413216656043851055322111, 13.58075706313120790338486741151