L(s) = 1 | + (0.686 + 1.23i)2-s + (1.72 + 1.72i)3-s + (−1.05 + 1.69i)4-s + (0.893 − 0.893i)5-s + (−0.949 + 3.32i)6-s − 2.98i·7-s + (−2.82 − 0.141i)8-s + 2.97i·9-s + (1.71 + 0.491i)10-s + (0.707 − 0.707i)11-s + (−4.76 + 1.10i)12-s + (−3.01 − 3.01i)13-s + (3.69 − 2.05i)14-s + 3.08·15-s + (−1.76 − 3.58i)16-s − 6.89·17-s + ⋯ |
L(s) = 1 | + (0.485 + 0.874i)2-s + (0.997 + 0.997i)3-s + (−0.528 + 0.848i)4-s + (0.399 − 0.399i)5-s + (−0.387 + 1.35i)6-s − 1.12i·7-s + (−0.998 − 0.0498i)8-s + 0.990i·9-s + (0.543 + 0.155i)10-s + (0.213 − 0.213i)11-s + (−1.37 + 0.319i)12-s + (−0.836 − 0.836i)13-s + (0.987 − 0.548i)14-s + 0.797·15-s + (−0.441 − 0.897i)16-s − 1.67·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0643 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 176 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0643 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.24582 + 1.32871i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.24582 + 1.32871i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.686 - 1.23i)T \) |
| 11 | \( 1 + (-0.707 + 0.707i)T \) |
good | 3 | \( 1 + (-1.72 - 1.72i)T + 3iT^{2} \) |
| 5 | \( 1 + (-0.893 + 0.893i)T - 5iT^{2} \) |
| 7 | \( 1 + 2.98iT - 7T^{2} \) |
| 13 | \( 1 + (3.01 + 3.01i)T + 13iT^{2} \) |
| 17 | \( 1 + 6.89T + 17T^{2} \) |
| 19 | \( 1 + (-2.03 - 2.03i)T + 19iT^{2} \) |
| 23 | \( 1 - 1.49iT - 23T^{2} \) |
| 29 | \( 1 + (-4.14 - 4.14i)T + 29iT^{2} \) |
| 31 | \( 1 - 1.31T + 31T^{2} \) |
| 37 | \( 1 + (5.93 - 5.93i)T - 37iT^{2} \) |
| 41 | \( 1 - 7.06iT - 41T^{2} \) |
| 43 | \( 1 + (-4.04 + 4.04i)T - 43iT^{2} \) |
| 47 | \( 1 - 5.17T + 47T^{2} \) |
| 53 | \( 1 + (-5.66 + 5.66i)T - 53iT^{2} \) |
| 59 | \( 1 + (3.49 - 3.49i)T - 59iT^{2} \) |
| 61 | \( 1 + (9.54 + 9.54i)T + 61iT^{2} \) |
| 67 | \( 1 + (9.71 + 9.71i)T + 67iT^{2} \) |
| 71 | \( 1 - 6.31iT - 71T^{2} \) |
| 73 | \( 1 + 0.614iT - 73T^{2} \) |
| 79 | \( 1 - 4.27T + 79T^{2} \) |
| 83 | \( 1 + (-10.0 - 10.0i)T + 83iT^{2} \) |
| 89 | \( 1 - 8.30iT - 89T^{2} \) |
| 97 | \( 1 + 12.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.58075706313120790338486741151, −12.32590413216656043851055322111, −10.70179471617157393551268365876, −9.680996325710419557671846249666, −8.871098725815509449181883181410, −7.890417972069713928131887313920, −6.76282714872086456593680194083, −5.14344183307855974043668680200, −4.23506793504067099525347261647, −3.11467363920941982765449226178,
2.16573423032044620567132649621, 2.59724017618102480365786837999, 4.51539129929294874218604040203, 6.10405427086635877474949698739, 7.13097221524921946569901627972, 8.802100707488329497289442385652, 9.187651422618060523321095278239, 10.56049547781826065551650926169, 11.88505520770658338534254085905, 12.38590735691898438273642780639