L(s) = 1 | − 14.8i·2-s + 239. i·3-s + 292.·4-s + 3.55e3·6-s + 2.40e3i·7-s − 1.19e4i·8-s − 3.77e4·9-s − 1.65e4·11-s + 7.00e4i·12-s − 2.63e4i·13-s + 3.56e4·14-s − 2.72e4·16-s − 1.44e5i·17-s + 5.60e5i·18-s + 1.59e5·19-s + ⋯ |
L(s) = 1 | − 0.655i·2-s + 1.70i·3-s + 0.570·4-s + 1.11·6-s + 0.377i·7-s − 1.02i·8-s − 1.91·9-s − 0.340·11-s + 0.974i·12-s − 0.255i·13-s + 0.247·14-s − 0.103·16-s − 0.418i·17-s + 1.25i·18-s + 0.281·19-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.894+0.447i)Λ(10−s)
Λ(s)=(=(175s/2ΓC(s+9/2)L(s)(0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.894+0.447i
|
Analytic conductor: |
90.1312 |
Root analytic conductor: |
9.49374 |
Motivic weight: |
9 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(99,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :9/2), 0.894+0.447i)
|
Particular Values
L(5) |
≈ |
2.246452164 |
L(21) |
≈ |
2.246452164 |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 7 | 1−2.40e3iT |
good | 2 | 1+14.8iT−512T2 |
| 3 | 1−239.iT−1.96e4T2 |
| 11 | 1+1.65e4T+2.35e9T2 |
| 13 | 1+2.63e4iT−1.06e10T2 |
| 17 | 1+1.44e5iT−1.18e11T2 |
| 19 | 1−1.59e5T+3.22e11T2 |
| 23 | 1+2.07e6iT−1.80e12T2 |
| 29 | 1−4.94e6T+1.45e13T2 |
| 31 | 1−4.22e6T+2.64e13T2 |
| 37 | 1+1.29e7iT−1.29e14T2 |
| 41 | 1+2.87e7T+3.27e14T2 |
| 43 | 1+3.54e7iT−5.02e14T2 |
| 47 | 1−5.95e7iT−1.11e15T2 |
| 53 | 1+2.31e6iT−3.29e15T2 |
| 59 | 1−1.68e8T+8.66e15T2 |
| 61 | 1+6.70e7T+1.16e16T2 |
| 67 | 1+1.56e8iT−2.72e16T2 |
| 71 | 1−6.95e7T+4.58e16T2 |
| 73 | 1−7.83e7iT−5.88e16T2 |
| 79 | 1−4.26e8T+1.19e17T2 |
| 83 | 1−5.31e8iT−1.86e17T2 |
| 89 | 1−1.14e8T+3.50e17T2 |
| 97 | 1+1.46e9iT−7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.68120002021342536355865471904, −10.26019652559310965512380791747, −9.316618504557064728172768295730, −8.259217413893866386339089818255, −6.62620416670885047730093130295, −5.36426541457156286212461751770, −4.34092311331886636031295134738, −3.20895386364833060935505400399, −2.41256638910707229372572248515, −0.53416562295898580710913470943,
1.03319722145540612297934964676, 1.93216098595404481962751743818, 3.09161937432092919211061403237, 5.20537749003550877479625152448, 6.33794564128637430492093249641, 6.92119247366971812386481974039, 7.82134883144711014496953838628, 8.440942829455383964489301607303, 10.19329372398641073519010588396, 11.55995211032923613848565773542