L(s) = 1 | + 14.8i·2-s − 239. i·3-s + 292.·4-s + 3.55e3·6-s − 2.40e3i·7-s + 1.19e4i·8-s − 3.77e4·9-s − 1.65e4·11-s − 7.00e4i·12-s + 2.63e4i·13-s + 3.56e4·14-s − 2.72e4·16-s + 1.44e5i·17-s − 5.60e5i·18-s + 1.59e5·19-s + ⋯ |
L(s) = 1 | + 0.655i·2-s − 1.70i·3-s + 0.570·4-s + 1.11·6-s − 0.377i·7-s + 1.02i·8-s − 1.91·9-s − 0.340·11-s − 0.974i·12-s + 0.255i·13-s + 0.247·14-s − 0.103·16-s + 0.418i·17-s − 1.25i·18-s + 0.281·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(5)\) |
\(\approx\) |
\(2.246452164\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.246452164\) |
\(L(\frac{11}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 + 2.40e3iT \) |
good | 2 | \( 1 - 14.8iT - 512T^{2} \) |
| 3 | \( 1 + 239. iT - 1.96e4T^{2} \) |
| 11 | \( 1 + 1.65e4T + 2.35e9T^{2} \) |
| 13 | \( 1 - 2.63e4iT - 1.06e10T^{2} \) |
| 17 | \( 1 - 1.44e5iT - 1.18e11T^{2} \) |
| 19 | \( 1 - 1.59e5T + 3.22e11T^{2} \) |
| 23 | \( 1 - 2.07e6iT - 1.80e12T^{2} \) |
| 29 | \( 1 - 4.94e6T + 1.45e13T^{2} \) |
| 31 | \( 1 - 4.22e6T + 2.64e13T^{2} \) |
| 37 | \( 1 - 1.29e7iT - 1.29e14T^{2} \) |
| 41 | \( 1 + 2.87e7T + 3.27e14T^{2} \) |
| 43 | \( 1 - 3.54e7iT - 5.02e14T^{2} \) |
| 47 | \( 1 + 5.95e7iT - 1.11e15T^{2} \) |
| 53 | \( 1 - 2.31e6iT - 3.29e15T^{2} \) |
| 59 | \( 1 - 1.68e8T + 8.66e15T^{2} \) |
| 61 | \( 1 + 6.70e7T + 1.16e16T^{2} \) |
| 67 | \( 1 - 1.56e8iT - 2.72e16T^{2} \) |
| 71 | \( 1 - 6.95e7T + 4.58e16T^{2} \) |
| 73 | \( 1 + 7.83e7iT - 5.88e16T^{2} \) |
| 79 | \( 1 - 4.26e8T + 1.19e17T^{2} \) |
| 83 | \( 1 + 5.31e8iT - 1.86e17T^{2} \) |
| 89 | \( 1 - 1.14e8T + 3.50e17T^{2} \) |
| 97 | \( 1 - 1.46e9iT - 7.60e17T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.55995211032923613848565773542, −10.19329372398641073519010588396, −8.440942829455383964489301607303, −7.82134883144711014496953838628, −6.92119247366971812386481974039, −6.33794564128637430492093249641, −5.20537749003550877479625152448, −3.09161937432092919211061403237, −1.93216098595404481962751743818, −1.03319722145540612297934964676,
0.53416562295898580710913470943, 2.41256638910707229372572248515, 3.20895386364833060935505400399, 4.34092311331886636031295134738, 5.36426541457156286212461751770, 6.62620416670885047730093130295, 8.259217413893866386339089818255, 9.316618504557064728172768295730, 10.26019652559310965512380791747, 10.68120002021342536355865471904