L(s) = 1 | + (−0.0374 + 0.00196i)2-s + (0.0687 − 0.0849i)3-s + (−1.98 + 0.208i)4-s + (−0.633 + 2.14i)5-s + (−0.00240 + 0.00331i)6-s + (−2.20 + 1.46i)7-s + (0.147 − 0.0234i)8-s + (0.621 + 2.92i)9-s + (0.0195 − 0.0814i)10-s + (−1.34 − 0.286i)11-s + (−0.118 + 0.183i)12-s + (1.43 − 0.730i)13-s + (0.0795 − 0.0591i)14-s + (0.138 + 0.201i)15-s + (3.90 − 0.829i)16-s + (−1.56 + 4.07i)17-s + ⋯ |
L(s) = 1 | + (−0.0264 + 0.00138i)2-s + (0.0397 − 0.0490i)3-s + (−0.993 + 0.104i)4-s + (−0.283 + 0.959i)5-s + (−0.000982 + 0.00135i)6-s + (−0.832 + 0.553i)7-s + (0.0523 − 0.00828i)8-s + (0.207 + 0.974i)9-s + (0.00616 − 0.0257i)10-s + (−0.405 − 0.0862i)11-s + (−0.0343 + 0.0528i)12-s + (0.397 − 0.202i)13-s + (0.0212 − 0.0158i)14-s + (0.0357 + 0.0519i)15-s + (0.976 − 0.207i)16-s + (−0.379 + 0.988i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(−0.399−0.916i)Λ(2−s)
Λ(s)=(=(175s/2ΓC(s+1/2)L(s)(−0.399−0.916i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
−0.399−0.916i
|
Analytic conductor: |
1.39738 |
Root analytic conductor: |
1.18210 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(17,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :1/2), −0.399−0.916i)
|
Particular Values
L(1) |
≈ |
0.363124+0.554380i |
L(21) |
≈ |
0.363124+0.554380i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.633−2.14i)T |
| 7 | 1+(2.20−1.46i)T |
good | 2 | 1+(0.0374−0.00196i)T+(1.98−0.209i)T2 |
| 3 | 1+(−0.0687+0.0849i)T+(−0.623−2.93i)T2 |
| 11 | 1+(1.34+0.286i)T+(10.0+4.47i)T2 |
| 13 | 1+(−1.43+0.730i)T+(7.64−10.5i)T2 |
| 17 | 1+(1.56−4.07i)T+(−12.6−11.3i)T2 |
| 19 | 1+(0.00716−0.0681i)T+(−18.5−3.95i)T2 |
| 23 | 1+(0.295+5.63i)T+(−22.8+2.40i)T2 |
| 29 | 1+(−3.88−5.35i)T+(−8.96+27.5i)T2 |
| 31 | 1+(−1.42−3.20i)T+(−20.7+23.0i)T2 |
| 37 | 1+(6.49+4.21i)T+(15.0+33.8i)T2 |
| 41 | 1+(−9.12−2.96i)T+(33.1+24.0i)T2 |
| 43 | 1+(3.38−3.38i)T−43iT2 |
| 47 | 1+(−6.65+2.55i)T+(34.9−31.4i)T2 |
| 53 | 1+(−2.30−1.86i)T+(11.0+51.8i)T2 |
| 59 | 1+(−6.88−7.64i)T+(−6.16+58.6i)T2 |
| 61 | 1+(−5.62−5.06i)T+(6.37+60.6i)T2 |
| 67 | 1+(8.28+3.18i)T+(49.7+44.8i)T2 |
| 71 | 1+(−5.52+4.01i)T+(21.9−67.5i)T2 |
| 73 | 1+(0.233+0.359i)T+(−29.6+66.6i)T2 |
| 79 | 1+(3.70−8.31i)T+(−52.8−58.7i)T2 |
| 83 | 1+(−0.663−4.19i)T+(−78.9+25.6i)T2 |
| 89 | 1+(5.38−5.98i)T+(−9.30−88.5i)T2 |
| 97 | 1+(2.59−16.3i)T+(−92.2−29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.03569777353592976958235360381, −12.29543031812082675078667323581, −10.69347390343842009443653002934, −10.27321365907233995003572647732, −8.863510950414942924213547324843, −8.065082955084450673570878848469, −6.76310603703295824664423613654, −5.53201649285790478084630093346, −4.08519572112683341007534737314, −2.74816327879635601932379705399,
0.64254826302408406250477063436, 3.60048323489881482859181013965, 4.53897413015696328973454777320, 5.84211148937111581582984268644, 7.28469081363620519026147377990, 8.556655442421699999116852303421, 9.418201583989384896100347577722, 10.00595760663901262319690503297, 11.61963013928648844441099675043, 12.59041458733463643186447079594