Properties

Label 2-175-175.103-c1-0-14
Degree $2$
Conductor $175$
Sign $-0.399 + 0.916i$
Analytic cond. $1.39738$
Root an. cond. $1.18210$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.0374 − 0.00196i)2-s + (0.0687 + 0.0849i)3-s + (−1.98 − 0.208i)4-s + (−0.633 − 2.14i)5-s + (−0.00240 − 0.00331i)6-s + (−2.20 − 1.46i)7-s + (0.147 + 0.0234i)8-s + (0.621 − 2.92i)9-s + (0.0195 + 0.0814i)10-s + (−1.34 + 0.286i)11-s + (−0.118 − 0.183i)12-s + (1.43 + 0.730i)13-s + (0.0795 + 0.0591i)14-s + (0.138 − 0.201i)15-s + (3.90 + 0.829i)16-s + (−1.56 − 4.07i)17-s + ⋯
L(s)  = 1  + (−0.0264 − 0.00138i)2-s + (0.0397 + 0.0490i)3-s + (−0.993 − 0.104i)4-s + (−0.283 − 0.959i)5-s + (−0.000982 − 0.00135i)6-s + (−0.832 − 0.553i)7-s + (0.0523 + 0.00828i)8-s + (0.207 − 0.974i)9-s + (0.00616 + 0.0257i)10-s + (−0.405 + 0.0862i)11-s + (−0.0343 − 0.0528i)12-s + (0.397 + 0.202i)13-s + (0.0212 + 0.0158i)14-s + (0.0357 − 0.0519i)15-s + (0.976 + 0.207i)16-s + (−0.379 − 0.988i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.399 + 0.916i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.399 + 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-0.399 + 0.916i$
Analytic conductor: \(1.39738\)
Root analytic conductor: \(1.18210\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :1/2),\ -0.399 + 0.916i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.363124 - 0.554380i\)
\(L(\frac12)\) \(\approx\) \(0.363124 - 0.554380i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (0.633 + 2.14i)T \)
7 \( 1 + (2.20 + 1.46i)T \)
good2 \( 1 + (0.0374 + 0.00196i)T + (1.98 + 0.209i)T^{2} \)
3 \( 1 + (-0.0687 - 0.0849i)T + (-0.623 + 2.93i)T^{2} \)
11 \( 1 + (1.34 - 0.286i)T + (10.0 - 4.47i)T^{2} \)
13 \( 1 + (-1.43 - 0.730i)T + (7.64 + 10.5i)T^{2} \)
17 \( 1 + (1.56 + 4.07i)T + (-12.6 + 11.3i)T^{2} \)
19 \( 1 + (0.00716 + 0.0681i)T + (-18.5 + 3.95i)T^{2} \)
23 \( 1 + (0.295 - 5.63i)T + (-22.8 - 2.40i)T^{2} \)
29 \( 1 + (-3.88 + 5.35i)T + (-8.96 - 27.5i)T^{2} \)
31 \( 1 + (-1.42 + 3.20i)T + (-20.7 - 23.0i)T^{2} \)
37 \( 1 + (6.49 - 4.21i)T + (15.0 - 33.8i)T^{2} \)
41 \( 1 + (-9.12 + 2.96i)T + (33.1 - 24.0i)T^{2} \)
43 \( 1 + (3.38 + 3.38i)T + 43iT^{2} \)
47 \( 1 + (-6.65 - 2.55i)T + (34.9 + 31.4i)T^{2} \)
53 \( 1 + (-2.30 + 1.86i)T + (11.0 - 51.8i)T^{2} \)
59 \( 1 + (-6.88 + 7.64i)T + (-6.16 - 58.6i)T^{2} \)
61 \( 1 + (-5.62 + 5.06i)T + (6.37 - 60.6i)T^{2} \)
67 \( 1 + (8.28 - 3.18i)T + (49.7 - 44.8i)T^{2} \)
71 \( 1 + (-5.52 - 4.01i)T + (21.9 + 67.5i)T^{2} \)
73 \( 1 + (0.233 - 0.359i)T + (-29.6 - 66.6i)T^{2} \)
79 \( 1 + (3.70 + 8.31i)T + (-52.8 + 58.7i)T^{2} \)
83 \( 1 + (-0.663 + 4.19i)T + (-78.9 - 25.6i)T^{2} \)
89 \( 1 + (5.38 + 5.98i)T + (-9.30 + 88.5i)T^{2} \)
97 \( 1 + (2.59 + 16.3i)T + (-92.2 + 29.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.59041458733463643186447079594, −11.61963013928648844441099675043, −10.00595760663901262319690503297, −9.418201583989384896100347577722, −8.556655442421699999116852303421, −7.28469081363620519026147377990, −5.84211148937111581582984268644, −4.53897413015696328973454777320, −3.60048323489881482859181013965, −0.64254826302408406250477063436, 2.74816327879635601932379705399, 4.08519572112683341007534737314, 5.53201649285790478084630093346, 6.76310603703295824664423613654, 8.065082955084450673570878848469, 8.863510950414942924213547324843, 10.27321365907233995003572647732, 10.69347390343842009443653002934, 12.29543031812082675078667323581, 13.03569777353592976958235360381

Graph of the $Z$-function along the critical line