L(s) = 1 | + (0.0712 + 1.35i)2-s + (−0.508 − 0.412i)3-s + (0.146 − 0.0153i)4-s + (2.05 − 0.886i)5-s + (0.524 − 0.721i)6-s + (1.38 − 2.25i)7-s + (0.457 + 2.88i)8-s + (−0.534 − 2.51i)9-s + (1.35 + 2.72i)10-s + (−3.52 − 0.749i)11-s + (−0.0806 − 0.0523i)12-s + (3.11 + 6.10i)13-s + (3.16 + 1.72i)14-s + (−1.41 − 0.395i)15-s + (−3.60 + 0.766i)16-s + (−0.931 − 0.357i)17-s + ⋯ |
L(s) = 1 | + (0.0503 + 0.961i)2-s + (−0.293 − 0.237i)3-s + (0.0730 − 0.00767i)4-s + (0.918 − 0.396i)5-s + (0.213 − 0.294i)6-s + (0.523 − 0.851i)7-s + (0.161 + 1.02i)8-s + (−0.178 − 0.838i)9-s + (0.427 + 0.862i)10-s + (−1.06 − 0.225i)11-s + (−0.0232 − 0.0151i)12-s + (0.862 + 1.69i)13-s + (0.845 + 0.460i)14-s + (−0.364 − 0.101i)15-s + (−0.901 + 0.191i)16-s + (−0.225 − 0.0866i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.788−0.615i)Λ(2−s)
Λ(s)=(=(175s/2ΓC(s+1/2)L(s)(0.788−0.615i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.788−0.615i
|
Analytic conductor: |
1.39738 |
Root analytic conductor: |
1.18210 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(108,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :1/2), 0.788−0.615i)
|
Particular Values
L(1) |
≈ |
1.28857+0.443301i |
L(21) |
≈ |
1.28857+0.443301i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−2.05+0.886i)T |
| 7 | 1+(−1.38+2.25i)T |
good | 2 | 1+(−0.0712−1.35i)T+(−1.98+0.209i)T2 |
| 3 | 1+(0.508+0.412i)T+(0.623+2.93i)T2 |
| 11 | 1+(3.52+0.749i)T+(10.0+4.47i)T2 |
| 13 | 1+(−3.11−6.10i)T+(−7.64+10.5i)T2 |
| 17 | 1+(0.931+0.357i)T+(12.6+11.3i)T2 |
| 19 | 1+(0.467−4.44i)T+(−18.5−3.95i)T2 |
| 23 | 1+(3.95−0.207i)T+(22.8−2.40i)T2 |
| 29 | 1+(4.04+5.57i)T+(−8.96+27.5i)T2 |
| 31 | 1+(2.51+5.65i)T+(−20.7+23.0i)T2 |
| 37 | 1+(1.65−2.54i)T+(−15.0−33.8i)T2 |
| 41 | 1+(−5.72−1.85i)T+(33.1+24.0i)T2 |
| 43 | 1+(−3.08−3.08i)T+43iT2 |
| 47 | 1+(1.75+4.56i)T+(−34.9+31.4i)T2 |
| 53 | 1+(5.55−6.86i)T+(−11.0−51.8i)T2 |
| 59 | 1+(−1.85−2.05i)T+(−6.16+58.6i)T2 |
| 61 | 1+(−2.72−2.44i)T+(6.37+60.6i)T2 |
| 67 | 1+(−5.05+13.1i)T+(−49.7−44.8i)T2 |
| 71 | 1+(7.11−5.17i)T+(21.9−67.5i)T2 |
| 73 | 1+(4.33−2.81i)T+(29.6−66.6i)T2 |
| 79 | 1+(0.406−0.913i)T+(−52.8−58.7i)T2 |
| 83 | 1+(13.6−2.16i)T+(78.9−25.6i)T2 |
| 89 | 1+(−1.15+1.28i)T+(−9.30−88.5i)T2 |
| 97 | 1+(−13.1−2.08i)T+(92.2+29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.12713524771302154679403616916, −11.73141298704437608708681498806, −10.95740246943546478786311227035, −9.700220265356557506633636486063, −8.516686086344693733656446627746, −7.49199616659181103536909014486, −6.32294205021792669600463757380, −5.75722185178302110862197025548, −4.27640866405497567371138621295, −1.84473769368120531680832502530,
2.05432938172655929680153286928, 3.02490650807016513382747001792, 5.10082766750482691346733564092, 5.89085995014606681182908791360, 7.48790423841381288142423600221, 8.751908641271241480440062280419, 10.12723825764002943452433950648, 10.75547845314360968957103987044, 11.24519581150436788806725788347, 12.76470835416798495731675467345