sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(175, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([9,10]))
pari:[g,chi] = znchar(Mod(108,175))
Modulus: | \(175\) | |
Conductor: | \(175\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(60\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{175}(3,\cdot)\)
\(\chi_{175}(12,\cdot)\)
\(\chi_{175}(17,\cdot)\)
\(\chi_{175}(33,\cdot)\)
\(\chi_{175}(38,\cdot)\)
\(\chi_{175}(47,\cdot)\)
\(\chi_{175}(52,\cdot)\)
\(\chi_{175}(73,\cdot)\)
\(\chi_{175}(87,\cdot)\)
\(\chi_{175}(103,\cdot)\)
\(\chi_{175}(108,\cdot)\)
\(\chi_{175}(117,\cdot)\)
\(\chi_{175}(122,\cdot)\)
\(\chi_{175}(138,\cdot)\)
\(\chi_{175}(152,\cdot)\)
\(\chi_{175}(173,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((127,101)\) → \((e\left(\frac{3}{20}\right),e\left(\frac{1}{6}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
\( \chi_{ 175 }(108, a) \) |
\(1\) | \(1\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{13}{60}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{11}{60}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{14}{15}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)