L(s) = 1 | + (0.000898 + 0.0171i)2-s + (0.879 + 0.711i)3-s + (1.98 − 0.209i)4-s + (1.43 + 1.71i)5-s + (−0.0114 + 0.0157i)6-s + (−2.51 + 0.822i)7-s + (0.0107 + 0.0678i)8-s + (−0.357 − 1.68i)9-s + (−0.0281 + 0.0261i)10-s + (−4.96 − 1.05i)11-s + (1.89 + 1.23i)12-s + (0.145 + 0.286i)13-s + (−0.0163 − 0.0423i)14-s + (0.0372 + 2.52i)15-s + (3.91 − 0.831i)16-s + (3.48 + 1.33i)17-s + ⋯ |
L(s) = 1 | + (0.000635 + 0.0121i)2-s + (0.507 + 0.410i)3-s + (0.994 − 0.104i)4-s + (0.640 + 0.767i)5-s + (−0.00466 + 0.00641i)6-s + (−0.950 + 0.310i)7-s + (0.00379 + 0.0239i)8-s + (−0.119 − 0.561i)9-s + (−0.00890 + 0.00825i)10-s + (−1.49 − 0.317i)11-s + (0.547 + 0.355i)12-s + (0.0404 + 0.0793i)13-s + (−0.00437 − 0.0113i)14-s + (0.00961 + 0.652i)15-s + (0.977 − 0.207i)16-s + (0.846 + 0.324i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.860−0.509i)Λ(2−s)
Λ(s)=(=(175s/2ΓC(s+1/2)L(s)(0.860−0.509i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.860−0.509i
|
Analytic conductor: |
1.39738 |
Root analytic conductor: |
1.18210 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(108,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :1/2), 0.860−0.509i)
|
Particular Values
L(1) |
≈ |
1.49199+0.408863i |
L(21) |
≈ |
1.49199+0.408863i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−1.43−1.71i)T |
| 7 | 1+(2.51−0.822i)T |
good | 2 | 1+(−0.000898−0.0171i)T+(−1.98+0.209i)T2 |
| 3 | 1+(−0.879−0.711i)T+(0.623+2.93i)T2 |
| 11 | 1+(4.96+1.05i)T+(10.0+4.47i)T2 |
| 13 | 1+(−0.145−0.286i)T+(−7.64+10.5i)T2 |
| 17 | 1+(−3.48−1.33i)T+(12.6+11.3i)T2 |
| 19 | 1+(−0.698+6.64i)T+(−18.5−3.95i)T2 |
| 23 | 1+(3.41−0.178i)T+(22.8−2.40i)T2 |
| 29 | 1+(−1.99−2.74i)T+(−8.96+27.5i)T2 |
| 31 | 1+(−0.305−0.686i)T+(−20.7+23.0i)T2 |
| 37 | 1+(−1.79+2.76i)T+(−15.0−33.8i)T2 |
| 41 | 1+(7.88+2.56i)T+(33.1+24.0i)T2 |
| 43 | 1+(3.99+3.99i)T+43iT2 |
| 47 | 1+(−2.25−5.87i)T+(−34.9+31.4i)T2 |
| 53 | 1+(7.10−8.77i)T+(−11.0−51.8i)T2 |
| 59 | 1+(−6.39−7.10i)T+(−6.16+58.6i)T2 |
| 61 | 1+(2.03+1.83i)T+(6.37+60.6i)T2 |
| 67 | 1+(2.33−6.09i)T+(−49.7−44.8i)T2 |
| 71 | 1+(3.66−2.66i)T+(21.9−67.5i)T2 |
| 73 | 1+(8.47−5.50i)T+(29.6−66.6i)T2 |
| 79 | 1+(−3.33+7.49i)T+(−52.8−58.7i)T2 |
| 83 | 1+(−1.28+0.203i)T+(78.9−25.6i)T2 |
| 89 | 1+(0.663−0.736i)T+(−9.30−88.5i)T2 |
| 97 | 1+(−12.2−1.94i)T+(92.2+29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.84426385777458488668130478554, −11.74086118890894284955963938436, −10.51934637594232292451721761370, −10.04934079474519669448816629675, −8.907294465428069008298665757443, −7.47830788343433934619275486625, −6.44671199583088401110821930309, −5.56493415795121676656620581182, −3.23969300787659928651361902027, −2.61475271533266398075203215745,
1.93646819375693468704640729691, 3.16147134406834706492569209936, 5.25020036691425434098906773826, 6.29735426625348077707173435354, 7.67046343440579764928264903865, 8.202982629885491898957629420742, 9.989942233781118261312388872584, 10.26504654039952296917924581341, 11.89911602361444792361146723901, 12.78721594799821032663945749194