L(s) = 1 | + (0.0691 + 1.31i)2-s + (1.21 + 0.985i)3-s + (0.253 − 0.0266i)4-s + (−0.928 − 2.03i)5-s + (−1.21 + 1.67i)6-s + (0.569 + 2.58i)7-s + (0.465 + 2.94i)8-s + (−0.113 − 0.536i)9-s + (2.61 − 1.36i)10-s + (0.468 + 0.0995i)11-s + (0.335 + 0.217i)12-s + (0.0993 + 0.195i)13-s + (−3.36 + 0.930i)14-s + (0.874 − 3.39i)15-s + (−3.34 + 0.712i)16-s + (−4.48 − 1.72i)17-s + ⋯ |
L(s) = 1 | + (0.0488 + 0.932i)2-s + (0.702 + 0.568i)3-s + (0.126 − 0.0133i)4-s + (−0.415 − 0.909i)5-s + (−0.496 + 0.683i)6-s + (0.215 + 0.976i)7-s + (0.164 + 1.04i)8-s + (−0.0379 − 0.178i)9-s + (0.828 − 0.431i)10-s + (0.141 + 0.0300i)11-s + (0.0967 + 0.0628i)12-s + (0.0275 + 0.0540i)13-s + (−0.900 + 0.248i)14-s + (0.225 − 0.875i)15-s + (−0.837 + 0.178i)16-s + (−1.08 − 0.417i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.0984−0.995i)Λ(2−s)
Λ(s)=(=(175s/2ΓC(s+1/2)L(s)(0.0984−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.0984−0.995i
|
Analytic conductor: |
1.39738 |
Root analytic conductor: |
1.18210 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(108,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :1/2), 0.0984−0.995i)
|
Particular Values
L(1) |
≈ |
1.11966+1.01439i |
L(21) |
≈ |
1.11966+1.01439i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.928+2.03i)T |
| 7 | 1+(−0.569−2.58i)T |
good | 2 | 1+(−0.0691−1.31i)T+(−1.98+0.209i)T2 |
| 3 | 1+(−1.21−0.985i)T+(0.623+2.93i)T2 |
| 11 | 1+(−0.468−0.0995i)T+(10.0+4.47i)T2 |
| 13 | 1+(−0.0993−0.195i)T+(−7.64+10.5i)T2 |
| 17 | 1+(4.48+1.72i)T+(12.6+11.3i)T2 |
| 19 | 1+(−0.561+5.33i)T+(−18.5−3.95i)T2 |
| 23 | 1+(−0.532+0.0278i)T+(22.8−2.40i)T2 |
| 29 | 1+(2.22+3.06i)T+(−8.96+27.5i)T2 |
| 31 | 1+(−1.36−3.05i)T+(−20.7+23.0i)T2 |
| 37 | 1+(−4.15+6.39i)T+(−15.0−33.8i)T2 |
| 41 | 1+(2.67+0.870i)T+(33.1+24.0i)T2 |
| 43 | 1+(−6.03−6.03i)T+43iT2 |
| 47 | 1+(2.68+6.98i)T+(−34.9+31.4i)T2 |
| 53 | 1+(3.04−3.76i)T+(−11.0−51.8i)T2 |
| 59 | 1+(3.58+3.97i)T+(−6.16+58.6i)T2 |
| 61 | 1+(−6.61−5.95i)T+(6.37+60.6i)T2 |
| 67 | 1+(4.65−12.1i)T+(−49.7−44.8i)T2 |
| 71 | 1+(−3.80+2.76i)T+(21.9−67.5i)T2 |
| 73 | 1+(−11.0+7.14i)T+(29.6−66.6i)T2 |
| 79 | 1+(3.76−8.46i)T+(−52.8−58.7i)T2 |
| 83 | 1+(9.38−1.48i)T+(78.9−25.6i)T2 |
| 89 | 1+(3.91−4.35i)T+(−9.30−88.5i)T2 |
| 97 | 1+(9.51+1.50i)T+(92.2+29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.10663367596706519060569665315, −11.89434643035056567933623955410, −11.16700694202696773859811726255, −9.335185230087903529924113755131, −8.855552035105303425174305913514, −7.980349346196537121763136748857, −6.68507343978791628535992436788, −5.40845577285403415592009071294, −4.37458025625311157148517628346, −2.54702590458905120205814054017,
1.79583302057052891125957213455, 3.09598681877467456717576306959, 4.14913559345846828433043188005, 6.49363847169130085422182418978, 7.37572557896693658407792498779, 8.193897279592724403797058353147, 9.821900921234564119923926582949, 10.78224748017914022928254267914, 11.27065423303392751673733034120, 12.47841457238126297234743660253