L(s) = 1 | + (0.0691 + 1.31i)2-s + (1.21 + 0.985i)3-s + (0.253 − 0.0266i)4-s + (−0.928 − 2.03i)5-s + (−1.21 + 1.67i)6-s + (0.569 + 2.58i)7-s + (0.465 + 2.94i)8-s + (−0.113 − 0.536i)9-s + (2.61 − 1.36i)10-s + (0.468 + 0.0995i)11-s + (0.335 + 0.217i)12-s + (0.0993 + 0.195i)13-s + (−3.36 + 0.930i)14-s + (0.874 − 3.39i)15-s + (−3.34 + 0.712i)16-s + (−4.48 − 1.72i)17-s + ⋯ |
L(s) = 1 | + (0.0488 + 0.932i)2-s + (0.702 + 0.568i)3-s + (0.126 − 0.0133i)4-s + (−0.415 − 0.909i)5-s + (−0.496 + 0.683i)6-s + (0.215 + 0.976i)7-s + (0.164 + 1.04i)8-s + (−0.0379 − 0.178i)9-s + (0.828 − 0.431i)10-s + (0.141 + 0.0300i)11-s + (0.0967 + 0.0628i)12-s + (0.0275 + 0.0540i)13-s + (−0.900 + 0.248i)14-s + (0.225 − 0.875i)15-s + (−0.837 + 0.178i)16-s + (−1.08 − 0.417i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0984 - 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0984 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.11966 + 1.01439i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.11966 + 1.01439i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (0.928 + 2.03i)T \) |
| 7 | \( 1 + (-0.569 - 2.58i)T \) |
good | 2 | \( 1 + (-0.0691 - 1.31i)T + (-1.98 + 0.209i)T^{2} \) |
| 3 | \( 1 + (-1.21 - 0.985i)T + (0.623 + 2.93i)T^{2} \) |
| 11 | \( 1 + (-0.468 - 0.0995i)T + (10.0 + 4.47i)T^{2} \) |
| 13 | \( 1 + (-0.0993 - 0.195i)T + (-7.64 + 10.5i)T^{2} \) |
| 17 | \( 1 + (4.48 + 1.72i)T + (12.6 + 11.3i)T^{2} \) |
| 19 | \( 1 + (-0.561 + 5.33i)T + (-18.5 - 3.95i)T^{2} \) |
| 23 | \( 1 + (-0.532 + 0.0278i)T + (22.8 - 2.40i)T^{2} \) |
| 29 | \( 1 + (2.22 + 3.06i)T + (-8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (-1.36 - 3.05i)T + (-20.7 + 23.0i)T^{2} \) |
| 37 | \( 1 + (-4.15 + 6.39i)T + (-15.0 - 33.8i)T^{2} \) |
| 41 | \( 1 + (2.67 + 0.870i)T + (33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + (-6.03 - 6.03i)T + 43iT^{2} \) |
| 47 | \( 1 + (2.68 + 6.98i)T + (-34.9 + 31.4i)T^{2} \) |
| 53 | \( 1 + (3.04 - 3.76i)T + (-11.0 - 51.8i)T^{2} \) |
| 59 | \( 1 + (3.58 + 3.97i)T + (-6.16 + 58.6i)T^{2} \) |
| 61 | \( 1 + (-6.61 - 5.95i)T + (6.37 + 60.6i)T^{2} \) |
| 67 | \( 1 + (4.65 - 12.1i)T + (-49.7 - 44.8i)T^{2} \) |
| 71 | \( 1 + (-3.80 + 2.76i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-11.0 + 7.14i)T + (29.6 - 66.6i)T^{2} \) |
| 79 | \( 1 + (3.76 - 8.46i)T + (-52.8 - 58.7i)T^{2} \) |
| 83 | \( 1 + (9.38 - 1.48i)T + (78.9 - 25.6i)T^{2} \) |
| 89 | \( 1 + (3.91 - 4.35i)T + (-9.30 - 88.5i)T^{2} \) |
| 97 | \( 1 + (9.51 + 1.50i)T + (92.2 + 29.9i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.10663367596706519060569665315, −11.89434643035056567933623955410, −11.16700694202696773859811726255, −9.335185230087903529924113755131, −8.855552035105303425174305913514, −7.980349346196537121763136748857, −6.68507343978791628535992436788, −5.40845577285403415592009071294, −4.37458025625311157148517628346, −2.54702590458905120205814054017,
1.79583302057052891125957213455, 3.09598681877467456717576306959, 4.14913559345846828433043188005, 6.49363847169130085422182418978, 7.37572557896693658407792498779, 8.193897279592724403797058353147, 9.821900921234564119923926582949, 10.78224748017914022928254267914, 11.27065423303392751673733034120, 12.47841457238126297234743660253