L(s) = 1 | + (−0.139 − 2.65i)2-s + (0.171 + 0.138i)3-s + (−5.03 + 0.528i)4-s + (−2.22 − 0.174i)5-s + (0.344 − 0.474i)6-s + (−2.47 + 0.932i)7-s + (1.27 + 8.02i)8-s + (−0.613 − 2.88i)9-s + (−0.151 + 5.93i)10-s + (2.92 + 0.621i)11-s + (−0.936 − 0.608i)12-s + (−2.23 − 4.38i)13-s + (2.81 + 6.43i)14-s + (−0.358 − 0.339i)15-s + (11.2 − 2.38i)16-s + (−4.48 − 1.72i)17-s + ⋯ |
L(s) = 1 | + (−0.0983 − 1.87i)2-s + (0.0990 + 0.0802i)3-s + (−2.51 + 0.264i)4-s + (−0.996 − 0.0778i)5-s + (0.140 − 0.193i)6-s + (−0.935 + 0.352i)7-s + (0.449 + 2.83i)8-s + (−0.204 − 0.962i)9-s + (−0.0480 + 1.87i)10-s + (0.882 + 0.187i)11-s + (−0.270 − 0.175i)12-s + (−0.619 − 1.21i)13-s + (0.753 + 1.72i)14-s + (−0.0925 − 0.0877i)15-s + (2.80 − 0.596i)16-s + (−1.08 − 0.417i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(−0.567−0.823i)Λ(2−s)
Λ(s)=(=(175s/2ΓC(s+1/2)L(s)(−0.567−0.823i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
−0.567−0.823i
|
Analytic conductor: |
1.39738 |
Root analytic conductor: |
1.18210 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(108,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :1/2), −0.567−0.823i)
|
Particular Values
L(1) |
≈ |
0.218964+0.416748i |
L(21) |
≈ |
0.218964+0.416748i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(2.22+0.174i)T |
| 7 | 1+(2.47−0.932i)T |
good | 2 | 1+(0.139+2.65i)T+(−1.98+0.209i)T2 |
| 3 | 1+(−0.171−0.138i)T+(0.623+2.93i)T2 |
| 11 | 1+(−2.92−0.621i)T+(10.0+4.47i)T2 |
| 13 | 1+(2.23+4.38i)T+(−7.64+10.5i)T2 |
| 17 | 1+(4.48+1.72i)T+(12.6+11.3i)T2 |
| 19 | 1+(−0.376+3.58i)T+(−18.5−3.95i)T2 |
| 23 | 1+(−3.26+0.171i)T+(22.8−2.40i)T2 |
| 29 | 1+(−2.87−3.95i)T+(−8.96+27.5i)T2 |
| 31 | 1+(0.657+1.47i)T+(−20.7+23.0i)T2 |
| 37 | 1+(0.731−1.12i)T+(−15.0−33.8i)T2 |
| 41 | 1+(4.99+1.62i)T+(33.1+24.0i)T2 |
| 43 | 1+(8.43+8.43i)T+43iT2 |
| 47 | 1+(−1.19−3.12i)T+(−34.9+31.4i)T2 |
| 53 | 1+(2.69−3.32i)T+(−11.0−51.8i)T2 |
| 59 | 1+(−0.374−0.415i)T+(−6.16+58.6i)T2 |
| 61 | 1+(−7.43−6.69i)T+(6.37+60.6i)T2 |
| 67 | 1+(−3.34+8.72i)T+(−49.7−44.8i)T2 |
| 71 | 1+(0.293−0.213i)T+(21.9−67.5i)T2 |
| 73 | 1+(−2.45+1.59i)T+(29.6−66.6i)T2 |
| 79 | 1+(−2.12+4.78i)T+(−52.8−58.7i)T2 |
| 83 | 1+(−0.898+0.142i)T+(78.9−25.6i)T2 |
| 89 | 1+(−6.04+6.71i)T+(−9.30−88.5i)T2 |
| 97 | 1+(7.15+1.13i)T+(92.2+29.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.06442970372479401720974236634, −11.27070755009581143628473958670, −10.19862066653043484537976963160, −9.183781432377386430403545323056, −8.670024925150168209743659243146, −6.89103029380840808676225912738, −4.90237042244856720215718131398, −3.63822491746649417033944826673, −2.86285808257194137237245644463, −0.44902710593545335940279555118,
3.86858844899234535106369774907, 4.83880808179649263355166685997, 6.48219815618299220859706670457, 6.97143323894220805604031184201, 8.071197409800607266779765239071, 8.880100211670605108141248506332, 9.941845314424383719772536076111, 11.44796454906540462850064741672, 12.78814721134021617573346612073, 13.72363234649486315006859133321