Properties

Label 2-175-175.103-c3-0-23
Degree $2$
Conductor $175$
Sign $0.978 + 0.204i$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.143 + 0.00750i)2-s + (−0.396 − 0.489i)3-s + (−7.93 − 0.834i)4-s + (−6.20 + 9.30i)5-s + (−0.0531 − 0.0731i)6-s + (−18.1 − 3.69i)7-s + (−2.26 − 0.358i)8-s + (5.53 − 26.0i)9-s + (−0.958 + 1.28i)10-s + (62.9 − 13.3i)11-s + (2.73 + 4.21i)12-s + (50.0 + 25.5i)13-s + (−2.57 − 0.665i)14-s + (7.01 − 0.649i)15-s + (62.1 + 13.2i)16-s + (7.31 + 19.0i)17-s + ⋯
L(s)  = 1  + (0.0506 + 0.00265i)2-s + (−0.0763 − 0.0942i)3-s + (−0.991 − 0.104i)4-s + (−0.555 + 0.831i)5-s + (−0.00361 − 0.00497i)6-s + (−0.979 − 0.199i)7-s + (−0.100 − 0.0158i)8-s + (0.204 − 0.963i)9-s + (−0.0303 + 0.0406i)10-s + (1.72 − 0.366i)11-s + (0.0659 + 0.101i)12-s + (1.06 + 0.544i)13-s + (−0.0490 − 0.0126i)14-s + (0.120 − 0.0111i)15-s + (0.970 + 0.206i)16-s + (0.104 + 0.272i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.978 + 0.204i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.978 + 0.204i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $0.978 + 0.204i$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ 0.978 + 0.204i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.16563 - 0.120336i\)
\(L(\frac12)\) \(\approx\) \(1.16563 - 0.120336i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (6.20 - 9.30i)T \)
7 \( 1 + (18.1 + 3.69i)T \)
good2 \( 1 + (-0.143 - 0.00750i)T + (7.95 + 0.836i)T^{2} \)
3 \( 1 + (0.396 + 0.489i)T + (-5.61 + 26.4i)T^{2} \)
11 \( 1 + (-62.9 + 13.3i)T + (1.21e3 - 541. i)T^{2} \)
13 \( 1 + (-50.0 - 25.5i)T + (1.29e3 + 1.77e3i)T^{2} \)
17 \( 1 + (-7.31 - 19.0i)T + (-3.65e3 + 3.28e3i)T^{2} \)
19 \( 1 + (-7.32 - 69.7i)T + (-6.70e3 + 1.42e3i)T^{2} \)
23 \( 1 + (-2.91 + 55.6i)T + (-1.21e4 - 1.27e3i)T^{2} \)
29 \( 1 + (-56.0 + 77.1i)T + (-7.53e3 - 2.31e4i)T^{2} \)
31 \( 1 + (-30.4 + 68.3i)T + (-1.99e4 - 2.21e4i)T^{2} \)
37 \( 1 + (-126. + 82.1i)T + (2.06e4 - 4.62e4i)T^{2} \)
41 \( 1 + (214. - 69.7i)T + (5.57e4 - 4.05e4i)T^{2} \)
43 \( 1 + (-269. - 269. i)T + 7.95e4iT^{2} \)
47 \( 1 + (285. + 109. i)T + (7.71e4 + 6.94e4i)T^{2} \)
53 \( 1 + (-326. + 264. i)T + (3.09e4 - 1.45e5i)T^{2} \)
59 \( 1 + (-420. + 467. i)T + (-2.14e4 - 2.04e5i)T^{2} \)
61 \( 1 + (-481. + 433. i)T + (2.37e4 - 2.25e5i)T^{2} \)
67 \( 1 + (-1.63 + 0.625i)T + (2.23e5 - 2.01e5i)T^{2} \)
71 \( 1 + (-663. - 481. i)T + (1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (-140. + 216. i)T + (-1.58e5 - 3.55e5i)T^{2} \)
79 \( 1 + (250. + 563. i)T + (-3.29e5 + 3.66e5i)T^{2} \)
83 \( 1 + (99.9 - 631. i)T + (-5.43e5 - 1.76e5i)T^{2} \)
89 \( 1 + (-628. - 698. i)T + (-7.36e4 + 7.01e5i)T^{2} \)
97 \( 1 + (-170. - 1.07e3i)T + (-8.68e5 + 2.82e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.20766128862003190414345602975, −11.37246432104077993084016054888, −10.01979915853730969964323953226, −9.293372682881540912899519786458, −8.271763594143884744991386007688, −6.59393675495045044956350745064, −6.22872861946262901394067377761, −3.87858692802877991054756450103, −3.69326057012525272178296949364, −0.826197120608440299810110480705, 0.966812023803598229441343558297, 3.53402369829251951271696353131, 4.48134931710315621304914687644, 5.64573169344758219950288774736, 7.12753372436396343388966611264, 8.521586191601331034402362795963, 9.093123101646588272281242200211, 10.07137561793641155075542824022, 11.48798809535879775305268476032, 12.43428393576851553058707797678

Graph of the $Z$-function along the critical line