L(s) = 1 | + (0.143 + 0.00750i)2-s + (−0.396 − 0.489i)3-s + (−7.93 − 0.834i)4-s + (−6.20 + 9.30i)5-s + (−0.0531 − 0.0731i)6-s + (−18.1 − 3.69i)7-s + (−2.26 − 0.358i)8-s + (5.53 − 26.0i)9-s + (−0.958 + 1.28i)10-s + (62.9 − 13.3i)11-s + (2.73 + 4.21i)12-s + (50.0 + 25.5i)13-s + (−2.57 − 0.665i)14-s + (7.01 − 0.649i)15-s + (62.1 + 13.2i)16-s + (7.31 + 19.0i)17-s + ⋯ |
L(s) = 1 | + (0.0506 + 0.00265i)2-s + (−0.0763 − 0.0942i)3-s + (−0.991 − 0.104i)4-s + (−0.555 + 0.831i)5-s + (−0.00361 − 0.00497i)6-s + (−0.979 − 0.199i)7-s + (−0.100 − 0.0158i)8-s + (0.204 − 0.963i)9-s + (−0.0303 + 0.0406i)10-s + (1.72 − 0.366i)11-s + (0.0659 + 0.101i)12-s + (1.06 + 0.544i)13-s + (−0.0490 − 0.0126i)14-s + (0.120 − 0.0111i)15-s + (0.970 + 0.206i)16-s + (0.104 + 0.272i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.978+0.204i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(0.978+0.204i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.978+0.204i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), 0.978+0.204i)
|
Particular Values
L(2) |
≈ |
1.16563−0.120336i |
L(21) |
≈ |
1.16563−0.120336i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(6.20−9.30i)T |
| 7 | 1+(18.1+3.69i)T |
good | 2 | 1+(−0.143−0.00750i)T+(7.95+0.836i)T2 |
| 3 | 1+(0.396+0.489i)T+(−5.61+26.4i)T2 |
| 11 | 1+(−62.9+13.3i)T+(1.21e3−541.i)T2 |
| 13 | 1+(−50.0−25.5i)T+(1.29e3+1.77e3i)T2 |
| 17 | 1+(−7.31−19.0i)T+(−3.65e3+3.28e3i)T2 |
| 19 | 1+(−7.32−69.7i)T+(−6.70e3+1.42e3i)T2 |
| 23 | 1+(−2.91+55.6i)T+(−1.21e4−1.27e3i)T2 |
| 29 | 1+(−56.0+77.1i)T+(−7.53e3−2.31e4i)T2 |
| 31 | 1+(−30.4+68.3i)T+(−1.99e4−2.21e4i)T2 |
| 37 | 1+(−126.+82.1i)T+(2.06e4−4.62e4i)T2 |
| 41 | 1+(214.−69.7i)T+(5.57e4−4.05e4i)T2 |
| 43 | 1+(−269.−269.i)T+7.95e4iT2 |
| 47 | 1+(285.+109.i)T+(7.71e4+6.94e4i)T2 |
| 53 | 1+(−326.+264.i)T+(3.09e4−1.45e5i)T2 |
| 59 | 1+(−420.+467.i)T+(−2.14e4−2.04e5i)T2 |
| 61 | 1+(−481.+433.i)T+(2.37e4−2.25e5i)T2 |
| 67 | 1+(−1.63+0.625i)T+(2.23e5−2.01e5i)T2 |
| 71 | 1+(−663.−481.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(−140.+216.i)T+(−1.58e5−3.55e5i)T2 |
| 79 | 1+(250.+563.i)T+(−3.29e5+3.66e5i)T2 |
| 83 | 1+(99.9−631.i)T+(−5.43e5−1.76e5i)T2 |
| 89 | 1+(−628.−698.i)T+(−7.36e4+7.01e5i)T2 |
| 97 | 1+(−170.−1.07e3i)T+(−8.68e5+2.82e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.20766128862003190414345602975, −11.37246432104077993084016054888, −10.01979915853730969964323953226, −9.293372682881540912899519786458, −8.271763594143884744991386007688, −6.59393675495045044956350745064, −6.22872861946262901394067377761, −3.87858692802877991054756450103, −3.69326057012525272178296949364, −0.826197120608440299810110480705,
0.966812023803598229441343558297, 3.53402369829251951271696353131, 4.48134931710315621304914687644, 5.64573169344758219950288774736, 7.12753372436396343388966611264, 8.521586191601331034402362795963, 9.093123101646588272281242200211, 10.07137561793641155075542824022, 11.48798809535879775305268476032, 12.43428393576851553058707797678