Properties

Label 2-175-175.17-c3-0-23
Degree $2$
Conductor $175$
Sign $0.978 - 0.204i$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.143 − 0.00750i)2-s + (−0.396 + 0.489i)3-s + (−7.93 + 0.834i)4-s + (−6.20 − 9.30i)5-s + (−0.0531 + 0.0731i)6-s + (−18.1 + 3.69i)7-s + (−2.26 + 0.358i)8-s + (5.53 + 26.0i)9-s + (−0.958 − 1.28i)10-s + (62.9 + 13.3i)11-s + (2.73 − 4.21i)12-s + (50.0 − 25.5i)13-s + (−2.57 + 0.665i)14-s + (7.01 + 0.649i)15-s + (62.1 − 13.2i)16-s + (7.31 − 19.0i)17-s + ⋯
L(s)  = 1  + (0.0506 − 0.00265i)2-s + (−0.0763 + 0.0942i)3-s + (−0.991 + 0.104i)4-s + (−0.555 − 0.831i)5-s + (−0.00361 + 0.00497i)6-s + (−0.979 + 0.199i)7-s + (−0.100 + 0.0158i)8-s + (0.204 + 0.963i)9-s + (−0.0303 − 0.0406i)10-s + (1.72 + 0.366i)11-s + (0.0659 − 0.101i)12-s + (1.06 − 0.544i)13-s + (−0.0490 + 0.0126i)14-s + (0.120 + 0.0111i)15-s + (0.970 − 0.206i)16-s + (0.104 − 0.272i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.978 - 0.204i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.978 - 0.204i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $0.978 - 0.204i$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ 0.978 - 0.204i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.16563 + 0.120336i\)
\(L(\frac12)\) \(\approx\) \(1.16563 + 0.120336i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (6.20 + 9.30i)T \)
7 \( 1 + (18.1 - 3.69i)T \)
good2 \( 1 + (-0.143 + 0.00750i)T + (7.95 - 0.836i)T^{2} \)
3 \( 1 + (0.396 - 0.489i)T + (-5.61 - 26.4i)T^{2} \)
11 \( 1 + (-62.9 - 13.3i)T + (1.21e3 + 541. i)T^{2} \)
13 \( 1 + (-50.0 + 25.5i)T + (1.29e3 - 1.77e3i)T^{2} \)
17 \( 1 + (-7.31 + 19.0i)T + (-3.65e3 - 3.28e3i)T^{2} \)
19 \( 1 + (-7.32 + 69.7i)T + (-6.70e3 - 1.42e3i)T^{2} \)
23 \( 1 + (-2.91 - 55.6i)T + (-1.21e4 + 1.27e3i)T^{2} \)
29 \( 1 + (-56.0 - 77.1i)T + (-7.53e3 + 2.31e4i)T^{2} \)
31 \( 1 + (-30.4 - 68.3i)T + (-1.99e4 + 2.21e4i)T^{2} \)
37 \( 1 + (-126. - 82.1i)T + (2.06e4 + 4.62e4i)T^{2} \)
41 \( 1 + (214. + 69.7i)T + (5.57e4 + 4.05e4i)T^{2} \)
43 \( 1 + (-269. + 269. i)T - 7.95e4iT^{2} \)
47 \( 1 + (285. - 109. i)T + (7.71e4 - 6.94e4i)T^{2} \)
53 \( 1 + (-326. - 264. i)T + (3.09e4 + 1.45e5i)T^{2} \)
59 \( 1 + (-420. - 467. i)T + (-2.14e4 + 2.04e5i)T^{2} \)
61 \( 1 + (-481. - 433. i)T + (2.37e4 + 2.25e5i)T^{2} \)
67 \( 1 + (-1.63 - 0.625i)T + (2.23e5 + 2.01e5i)T^{2} \)
71 \( 1 + (-663. + 481. i)T + (1.10e5 - 3.40e5i)T^{2} \)
73 \( 1 + (-140. - 216. i)T + (-1.58e5 + 3.55e5i)T^{2} \)
79 \( 1 + (250. - 563. i)T + (-3.29e5 - 3.66e5i)T^{2} \)
83 \( 1 + (99.9 + 631. i)T + (-5.43e5 + 1.76e5i)T^{2} \)
89 \( 1 + (-628. + 698. i)T + (-7.36e4 - 7.01e5i)T^{2} \)
97 \( 1 + (-170. + 1.07e3i)T + (-8.68e5 - 2.82e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.43428393576851553058707797678, −11.48798809535879775305268476032, −10.07137561793641155075542824022, −9.093123101646588272281242200211, −8.521586191601331034402362795963, −7.12753372436396343388966611264, −5.64573169344758219950288774736, −4.48134931710315621304914687644, −3.53402369829251951271696353131, −0.966812023803598229441343558297, 0.826197120608440299810110480705, 3.69326057012525272178296949364, 3.87858692802877991054756450103, 6.22872861946262901394067377761, 6.59393675495045044956350745064, 8.271763594143884744991386007688, 9.293372682881540912899519786458, 10.01979915853730969964323953226, 11.37246432104077993084016054888, 12.20766128862003190414345602975

Graph of the $Z$-function along the critical line