L(s) = 1 | + (−2.60 − 0.136i)2-s + (4.66 + 5.76i)3-s + (−1.21 − 0.127i)4-s + (1.25 + 11.1i)5-s + (−11.3 − 15.6i)6-s + (−1.27 + 18.4i)7-s + (23.7 + 3.75i)8-s + (−5.81 + 27.3i)9-s + (−1.73 − 29.0i)10-s + (−17.0 + 3.61i)11-s + (−4.91 − 7.57i)12-s + (19.8 + 10.0i)13-s + (5.83 − 47.8i)14-s + (−58.1 + 59.0i)15-s + (−51.6 − 10.9i)16-s + (40.0 + 104. i)17-s + ⋯ |
L(s) = 1 | + (−0.919 − 0.0481i)2-s + (0.897 + 1.10i)3-s + (−0.151 − 0.0159i)4-s + (0.111 + 0.993i)5-s + (−0.772 − 1.06i)6-s + (−0.0687 + 0.997i)7-s + (1.04 + 0.165i)8-s + (−0.215 + 1.01i)9-s + (−0.0549 − 0.919i)10-s + (−0.466 + 0.0991i)11-s + (−0.118 − 0.182i)12-s + (0.422 + 0.215i)13-s + (0.111 − 0.913i)14-s + (−1.00 + 1.01i)15-s + (−0.806 − 0.171i)16-s + (0.571 + 1.48i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(−0.970−0.241i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(−0.970−0.241i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
−0.970−0.241i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), −0.970−0.241i)
|
Particular Values
L(2) |
≈ |
0.131284+1.07223i |
L(21) |
≈ |
0.131284+1.07223i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(−1.25−11.1i)T |
| 7 | 1+(1.27−18.4i)T |
good | 2 | 1+(2.60+0.136i)T+(7.95+0.836i)T2 |
| 3 | 1+(−4.66−5.76i)T+(−5.61+26.4i)T2 |
| 11 | 1+(17.0−3.61i)T+(1.21e3−541.i)T2 |
| 13 | 1+(−19.8−10.0i)T+(1.29e3+1.77e3i)T2 |
| 17 | 1+(−40.0−104.i)T+(−3.65e3+3.28e3i)T2 |
| 19 | 1+(10.2+97.8i)T+(−6.70e3+1.42e3i)T2 |
| 23 | 1+(−8.15+155.i)T+(−1.21e4−1.27e3i)T2 |
| 29 | 1+(6.80−9.36i)T+(−7.53e3−2.31e4i)T2 |
| 31 | 1+(10.0−22.5i)T+(−1.99e4−2.21e4i)T2 |
| 37 | 1+(271.−176.i)T+(2.06e4−4.62e4i)T2 |
| 41 | 1+(277.−90.1i)T+(5.57e4−4.05e4i)T2 |
| 43 | 1+(−245.−245.i)T+7.95e4iT2 |
| 47 | 1+(181.+69.7i)T+(7.71e4+6.94e4i)T2 |
| 53 | 1+(−148.+120.i)T+(3.09e4−1.45e5i)T2 |
| 59 | 1+(−385.+428.i)T+(−2.14e4−2.04e5i)T2 |
| 61 | 1+(−317.+285.i)T+(2.37e4−2.25e5i)T2 |
| 67 | 1+(84.7−32.5i)T+(2.23e5−2.01e5i)T2 |
| 71 | 1+(−518.−376.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(−137.+212.i)T+(−1.58e5−3.55e5i)T2 |
| 79 | 1+(−409.−920.i)T+(−3.29e5+3.66e5i)T2 |
| 83 | 1+(−35.9+226.i)T+(−5.43e5−1.76e5i)T2 |
| 89 | 1+(−378.−420.i)T+(−7.36e4+7.01e5i)T2 |
| 97 | 1+(20.7+130.i)T+(−8.68e5+2.82e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.79507533406452623107332034443, −11.15920009167622310440690752518, −10.34413590941867189910880510356, −9.727895788505246124094809420169, −8.677850468359621804240996070301, −8.215778616989790604675524930098, −6.57627248022419153085042804013, −4.95171805430968209035831194931, −3.56093706251182781459173529685, −2.28786062489259312303652092415,
0.63146374273455866376030509221, 1.65094424928450272327293818374, 3.68684477429543834095729117957, 5.30617485583229123275079388486, 7.24320216747282874719026936907, 7.75356715565368187793500974625, 8.597324243891048859550689084446, 9.491129283483341147616977890575, 10.43782008178706209906830241022, 11.99144495276171941143667554200