Properties

Label 2-175-175.17-c3-0-47
Degree $2$
Conductor $175$
Sign $-0.970 + 0.241i$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.60 + 0.136i)2-s + (4.66 − 5.76i)3-s + (−1.21 + 0.127i)4-s + (1.25 − 11.1i)5-s + (−11.3 + 15.6i)6-s + (−1.27 − 18.4i)7-s + (23.7 − 3.75i)8-s + (−5.81 − 27.3i)9-s + (−1.73 + 29.0i)10-s + (−17.0 − 3.61i)11-s + (−4.91 + 7.57i)12-s + (19.8 − 10.0i)13-s + (5.83 + 47.8i)14-s + (−58.1 − 59.0i)15-s + (−51.6 + 10.9i)16-s + (40.0 − 104. i)17-s + ⋯
L(s)  = 1  + (−0.919 + 0.0481i)2-s + (0.897 − 1.10i)3-s + (−0.151 + 0.0159i)4-s + (0.111 − 0.993i)5-s + (−0.772 + 1.06i)6-s + (−0.0687 − 0.997i)7-s + (1.04 − 0.165i)8-s + (−0.215 − 1.01i)9-s + (−0.0549 + 0.919i)10-s + (−0.466 − 0.0991i)11-s + (−0.118 + 0.182i)12-s + (0.422 − 0.215i)13-s + (0.111 + 0.913i)14-s + (−1.00 − 1.01i)15-s + (−0.806 + 0.171i)16-s + (0.571 − 1.48i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.970 + 0.241i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.970 + 0.241i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $-0.970 + 0.241i$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ -0.970 + 0.241i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.131284 - 1.07223i\)
\(L(\frac12)\) \(\approx\) \(0.131284 - 1.07223i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-1.25 + 11.1i)T \)
7 \( 1 + (1.27 + 18.4i)T \)
good2 \( 1 + (2.60 - 0.136i)T + (7.95 - 0.836i)T^{2} \)
3 \( 1 + (-4.66 + 5.76i)T + (-5.61 - 26.4i)T^{2} \)
11 \( 1 + (17.0 + 3.61i)T + (1.21e3 + 541. i)T^{2} \)
13 \( 1 + (-19.8 + 10.0i)T + (1.29e3 - 1.77e3i)T^{2} \)
17 \( 1 + (-40.0 + 104. i)T + (-3.65e3 - 3.28e3i)T^{2} \)
19 \( 1 + (10.2 - 97.8i)T + (-6.70e3 - 1.42e3i)T^{2} \)
23 \( 1 + (-8.15 - 155. i)T + (-1.21e4 + 1.27e3i)T^{2} \)
29 \( 1 + (6.80 + 9.36i)T + (-7.53e3 + 2.31e4i)T^{2} \)
31 \( 1 + (10.0 + 22.5i)T + (-1.99e4 + 2.21e4i)T^{2} \)
37 \( 1 + (271. + 176. i)T + (2.06e4 + 4.62e4i)T^{2} \)
41 \( 1 + (277. + 90.1i)T + (5.57e4 + 4.05e4i)T^{2} \)
43 \( 1 + (-245. + 245. i)T - 7.95e4iT^{2} \)
47 \( 1 + (181. - 69.7i)T + (7.71e4 - 6.94e4i)T^{2} \)
53 \( 1 + (-148. - 120. i)T + (3.09e4 + 1.45e5i)T^{2} \)
59 \( 1 + (-385. - 428. i)T + (-2.14e4 + 2.04e5i)T^{2} \)
61 \( 1 + (-317. - 285. i)T + (2.37e4 + 2.25e5i)T^{2} \)
67 \( 1 + (84.7 + 32.5i)T + (2.23e5 + 2.01e5i)T^{2} \)
71 \( 1 + (-518. + 376. i)T + (1.10e5 - 3.40e5i)T^{2} \)
73 \( 1 + (-137. - 212. i)T + (-1.58e5 + 3.55e5i)T^{2} \)
79 \( 1 + (-409. + 920. i)T + (-3.29e5 - 3.66e5i)T^{2} \)
83 \( 1 + (-35.9 - 226. i)T + (-5.43e5 + 1.76e5i)T^{2} \)
89 \( 1 + (-378. + 420. i)T + (-7.36e4 - 7.01e5i)T^{2} \)
97 \( 1 + (20.7 - 130. i)T + (-8.68e5 - 2.82e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.99144495276171941143667554200, −10.43782008178706209906830241022, −9.491129283483341147616977890575, −8.597324243891048859550689084446, −7.75356715565368187793500974625, −7.24320216747282874719026936907, −5.30617485583229123275079388486, −3.68684477429543834095729117957, −1.65094424928450272327293818374, −0.63146374273455866376030509221, 2.28786062489259312303652092415, 3.56093706251182781459173529685, 4.95171805430968209035831194931, 6.57627248022419153085042804013, 8.215778616989790604675524930098, 8.677850468359621804240996070301, 9.727895788505246124094809420169, 10.34413590941867189910880510356, 11.15920009167622310440690752518, 12.79507533406452623107332034443

Graph of the $Z$-function along the critical line