L(s) = 1 | + (−2.60 + 0.136i)2-s + (4.66 − 5.76i)3-s + (−1.21 + 0.127i)4-s + (1.25 − 11.1i)5-s + (−11.3 + 15.6i)6-s + (−1.27 − 18.4i)7-s + (23.7 − 3.75i)8-s + (−5.81 − 27.3i)9-s + (−1.73 + 29.0i)10-s + (−17.0 − 3.61i)11-s + (−4.91 + 7.57i)12-s + (19.8 − 10.0i)13-s + (5.83 + 47.8i)14-s + (−58.1 − 59.0i)15-s + (−51.6 + 10.9i)16-s + (40.0 − 104. i)17-s + ⋯ |
L(s) = 1 | + (−0.919 + 0.0481i)2-s + (0.897 − 1.10i)3-s + (−0.151 + 0.0159i)4-s + (0.111 − 0.993i)5-s + (−0.772 + 1.06i)6-s + (−0.0687 − 0.997i)7-s + (1.04 − 0.165i)8-s + (−0.215 − 1.01i)9-s + (−0.0549 + 0.919i)10-s + (−0.466 − 0.0991i)11-s + (−0.118 + 0.182i)12-s + (0.422 − 0.215i)13-s + (0.111 + 0.913i)14-s + (−1.00 − 1.01i)15-s + (−0.806 + 0.171i)16-s + (0.571 − 1.48i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.970 + 0.241i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.970 + 0.241i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.131284 - 1.07223i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.131284 - 1.07223i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (-1.25 + 11.1i)T \) |
| 7 | \( 1 + (1.27 + 18.4i)T \) |
good | 2 | \( 1 + (2.60 - 0.136i)T + (7.95 - 0.836i)T^{2} \) |
| 3 | \( 1 + (-4.66 + 5.76i)T + (-5.61 - 26.4i)T^{2} \) |
| 11 | \( 1 + (17.0 + 3.61i)T + (1.21e3 + 541. i)T^{2} \) |
| 13 | \( 1 + (-19.8 + 10.0i)T + (1.29e3 - 1.77e3i)T^{2} \) |
| 17 | \( 1 + (-40.0 + 104. i)T + (-3.65e3 - 3.28e3i)T^{2} \) |
| 19 | \( 1 + (10.2 - 97.8i)T + (-6.70e3 - 1.42e3i)T^{2} \) |
| 23 | \( 1 + (-8.15 - 155. i)T + (-1.21e4 + 1.27e3i)T^{2} \) |
| 29 | \( 1 + (6.80 + 9.36i)T + (-7.53e3 + 2.31e4i)T^{2} \) |
| 31 | \( 1 + (10.0 + 22.5i)T + (-1.99e4 + 2.21e4i)T^{2} \) |
| 37 | \( 1 + (271. + 176. i)T + (2.06e4 + 4.62e4i)T^{2} \) |
| 41 | \( 1 + (277. + 90.1i)T + (5.57e4 + 4.05e4i)T^{2} \) |
| 43 | \( 1 + (-245. + 245. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + (181. - 69.7i)T + (7.71e4 - 6.94e4i)T^{2} \) |
| 53 | \( 1 + (-148. - 120. i)T + (3.09e4 + 1.45e5i)T^{2} \) |
| 59 | \( 1 + (-385. - 428. i)T + (-2.14e4 + 2.04e5i)T^{2} \) |
| 61 | \( 1 + (-317. - 285. i)T + (2.37e4 + 2.25e5i)T^{2} \) |
| 67 | \( 1 + (84.7 + 32.5i)T + (2.23e5 + 2.01e5i)T^{2} \) |
| 71 | \( 1 + (-518. + 376. i)T + (1.10e5 - 3.40e5i)T^{2} \) |
| 73 | \( 1 + (-137. - 212. i)T + (-1.58e5 + 3.55e5i)T^{2} \) |
| 79 | \( 1 + (-409. + 920. i)T + (-3.29e5 - 3.66e5i)T^{2} \) |
| 83 | \( 1 + (-35.9 - 226. i)T + (-5.43e5 + 1.76e5i)T^{2} \) |
| 89 | \( 1 + (-378. + 420. i)T + (-7.36e4 - 7.01e5i)T^{2} \) |
| 97 | \( 1 + (20.7 - 130. i)T + (-8.68e5 - 2.82e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.99144495276171941143667554200, −10.43782008178706209906830241022, −9.491129283483341147616977890575, −8.597324243891048859550689084446, −7.75356715565368187793500974625, −7.24320216747282874719026936907, −5.30617485583229123275079388486, −3.68684477429543834095729117957, −1.65094424928450272327293818374, −0.63146374273455866376030509221,
2.28786062489259312303652092415, 3.56093706251182781459173529685, 4.95171805430968209035831194931, 6.57627248022419153085042804013, 8.215778616989790604675524930098, 8.677850468359621804240996070301, 9.727895788505246124094809420169, 10.34413590941867189910880510356, 11.15920009167622310440690752518, 12.79507533406452623107332034443