L(s) = 1 | + (1.99 + 0.104i)2-s + (−5.07 − 6.26i)3-s + (−3.98 − 0.419i)4-s + (−10.9 + 2.26i)5-s + (−9.46 − 13.0i)6-s + (15.9 + 9.35i)7-s + (−23.6 − 3.75i)8-s + (−7.90 + 37.1i)9-s + (−22.0 + 3.36i)10-s + (24.3 − 5.17i)11-s + (17.6 + 27.1i)12-s + (29.1 + 14.8i)13-s + (30.9 + 20.3i)14-s + (69.7 + 57.1i)15-s + (−15.4 − 3.29i)16-s + (−16.7 − 43.7i)17-s + ⋯ |
L(s) = 1 | + (0.705 + 0.0369i)2-s + (−0.976 − 1.20i)3-s + (−0.498 − 0.0523i)4-s + (−0.979 + 0.202i)5-s + (−0.644 − 0.886i)6-s + (0.862 + 0.505i)7-s + (−1.04 − 0.165i)8-s + (−0.292 + 1.37i)9-s + (−0.698 + 0.106i)10-s + (0.667 − 0.141i)11-s + (0.423 + 0.652i)12-s + (0.622 + 0.317i)13-s + (0.589 + 0.388i)14-s + (1.20 + 0.983i)15-s + (−0.242 − 0.0514i)16-s + (−0.239 − 0.623i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.497 - 0.867i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.497 - 0.867i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.667798 + 0.386679i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.667798 + 0.386679i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 + (10.9 - 2.26i)T \) |
| 7 | \( 1 + (-15.9 - 9.35i)T \) |
good | 2 | \( 1 + (-1.99 - 0.104i)T + (7.95 + 0.836i)T^{2} \) |
| 3 | \( 1 + (5.07 + 6.26i)T + (-5.61 + 26.4i)T^{2} \) |
| 11 | \( 1 + (-24.3 + 5.17i)T + (1.21e3 - 541. i)T^{2} \) |
| 13 | \( 1 + (-29.1 - 14.8i)T + (1.29e3 + 1.77e3i)T^{2} \) |
| 17 | \( 1 + (16.7 + 43.7i)T + (-3.65e3 + 3.28e3i)T^{2} \) |
| 19 | \( 1 + (-3.73 - 35.5i)T + (-6.70e3 + 1.42e3i)T^{2} \) |
| 23 | \( 1 + (11.4 - 218. i)T + (-1.21e4 - 1.27e3i)T^{2} \) |
| 29 | \( 1 + (130. - 179. i)T + (-7.53e3 - 2.31e4i)T^{2} \) |
| 31 | \( 1 + (-38.2 + 85.8i)T + (-1.99e4 - 2.21e4i)T^{2} \) |
| 37 | \( 1 + (218. - 141. i)T + (2.06e4 - 4.62e4i)T^{2} \) |
| 41 | \( 1 + (-36.1 + 11.7i)T + (5.57e4 - 4.05e4i)T^{2} \) |
| 43 | \( 1 + (-119. - 119. i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 + (340. + 130. i)T + (7.71e4 + 6.94e4i)T^{2} \) |
| 53 | \( 1 + (224. - 181. i)T + (3.09e4 - 1.45e5i)T^{2} \) |
| 59 | \( 1 + (392. - 435. i)T + (-2.14e4 - 2.04e5i)T^{2} \) |
| 61 | \( 1 + (-650. + 585. i)T + (2.37e4 - 2.25e5i)T^{2} \) |
| 67 | \( 1 + (586. - 225. i)T + (2.23e5 - 2.01e5i)T^{2} \) |
| 71 | \( 1 + (-783. - 569. i)T + (1.10e5 + 3.40e5i)T^{2} \) |
| 73 | \( 1 + (96.8 - 149. i)T + (-1.58e5 - 3.55e5i)T^{2} \) |
| 79 | \( 1 + (128. + 289. i)T + (-3.29e5 + 3.66e5i)T^{2} \) |
| 83 | \( 1 + (-129. + 819. i)T + (-5.43e5 - 1.76e5i)T^{2} \) |
| 89 | \( 1 + (-741. - 823. i)T + (-7.36e4 + 7.01e5i)T^{2} \) |
| 97 | \( 1 + (-35.9 - 226. i)T + (-8.68e5 + 2.82e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.27614285286908604501844255589, −11.66157934007288600125349288777, −11.17630694241959436138186052628, −9.190729167976256198074417697590, −8.070590272879412816223406255998, −7.03280531367928166600405101006, −5.91384173699896346604626647341, −4.98032359795220412107836473226, −3.60889845611392371008733093458, −1.34257482556512106426821620744,
0.36508346878130150013121490396, 3.75856272016217531664709493375, 4.34722212751535893543575531973, 5.10928050790918127037660439613, 6.40144734632431423821870812706, 8.152196483407548596378831222292, 9.071005862482601775216264889747, 10.44367345375708813088476170585, 11.18608451691648590923732454829, 11.95583115048023684385273986299