Properties

Label 2-175-175.103-c3-0-10
Degree $2$
Conductor $175$
Sign $0.497 - 0.867i$
Analytic cond. $10.3253$
Root an. cond. $3.21330$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.99 + 0.104i)2-s + (−5.07 − 6.26i)3-s + (−3.98 − 0.419i)4-s + (−10.9 + 2.26i)5-s + (−9.46 − 13.0i)6-s + (15.9 + 9.35i)7-s + (−23.6 − 3.75i)8-s + (−7.90 + 37.1i)9-s + (−22.0 + 3.36i)10-s + (24.3 − 5.17i)11-s + (17.6 + 27.1i)12-s + (29.1 + 14.8i)13-s + (30.9 + 20.3i)14-s + (69.7 + 57.1i)15-s + (−15.4 − 3.29i)16-s + (−16.7 − 43.7i)17-s + ⋯
L(s)  = 1  + (0.705 + 0.0369i)2-s + (−0.976 − 1.20i)3-s + (−0.498 − 0.0523i)4-s + (−0.979 + 0.202i)5-s + (−0.644 − 0.886i)6-s + (0.862 + 0.505i)7-s + (−1.04 − 0.165i)8-s + (−0.292 + 1.37i)9-s + (−0.698 + 0.106i)10-s + (0.667 − 0.141i)11-s + (0.423 + 0.652i)12-s + (0.622 + 0.317i)13-s + (0.589 + 0.388i)14-s + (1.20 + 0.983i)15-s + (−0.242 − 0.0514i)16-s + (−0.239 − 0.623i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.497 - 0.867i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 175 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.497 - 0.867i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(175\)    =    \(5^{2} \cdot 7\)
Sign: $0.497 - 0.867i$
Analytic conductor: \(10.3253\)
Root analytic conductor: \(3.21330\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{175} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 175,\ (\ :3/2),\ 0.497 - 0.867i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.667798 + 0.386679i\)
\(L(\frac12)\) \(\approx\) \(0.667798 + 0.386679i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (10.9 - 2.26i)T \)
7 \( 1 + (-15.9 - 9.35i)T \)
good2 \( 1 + (-1.99 - 0.104i)T + (7.95 + 0.836i)T^{2} \)
3 \( 1 + (5.07 + 6.26i)T + (-5.61 + 26.4i)T^{2} \)
11 \( 1 + (-24.3 + 5.17i)T + (1.21e3 - 541. i)T^{2} \)
13 \( 1 + (-29.1 - 14.8i)T + (1.29e3 + 1.77e3i)T^{2} \)
17 \( 1 + (16.7 + 43.7i)T + (-3.65e3 + 3.28e3i)T^{2} \)
19 \( 1 + (-3.73 - 35.5i)T + (-6.70e3 + 1.42e3i)T^{2} \)
23 \( 1 + (11.4 - 218. i)T + (-1.21e4 - 1.27e3i)T^{2} \)
29 \( 1 + (130. - 179. i)T + (-7.53e3 - 2.31e4i)T^{2} \)
31 \( 1 + (-38.2 + 85.8i)T + (-1.99e4 - 2.21e4i)T^{2} \)
37 \( 1 + (218. - 141. i)T + (2.06e4 - 4.62e4i)T^{2} \)
41 \( 1 + (-36.1 + 11.7i)T + (5.57e4 - 4.05e4i)T^{2} \)
43 \( 1 + (-119. - 119. i)T + 7.95e4iT^{2} \)
47 \( 1 + (340. + 130. i)T + (7.71e4 + 6.94e4i)T^{2} \)
53 \( 1 + (224. - 181. i)T + (3.09e4 - 1.45e5i)T^{2} \)
59 \( 1 + (392. - 435. i)T + (-2.14e4 - 2.04e5i)T^{2} \)
61 \( 1 + (-650. + 585. i)T + (2.37e4 - 2.25e5i)T^{2} \)
67 \( 1 + (586. - 225. i)T + (2.23e5 - 2.01e5i)T^{2} \)
71 \( 1 + (-783. - 569. i)T + (1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (96.8 - 149. i)T + (-1.58e5 - 3.55e5i)T^{2} \)
79 \( 1 + (128. + 289. i)T + (-3.29e5 + 3.66e5i)T^{2} \)
83 \( 1 + (-129. + 819. i)T + (-5.43e5 - 1.76e5i)T^{2} \)
89 \( 1 + (-741. - 823. i)T + (-7.36e4 + 7.01e5i)T^{2} \)
97 \( 1 + (-35.9 - 226. i)T + (-8.68e5 + 2.82e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.27614285286908604501844255589, −11.66157934007288600125349288777, −11.17630694241959436138186052628, −9.190729167976256198074417697590, −8.070590272879412816223406255998, −7.03280531367928166600405101006, −5.91384173699896346604626647341, −4.98032359795220412107836473226, −3.60889845611392371008733093458, −1.34257482556512106426821620744, 0.36508346878130150013121490396, 3.75856272016217531664709493375, 4.34722212751535893543575531973, 5.10928050790918127037660439613, 6.40144734632431423821870812706, 8.152196483407548596378831222292, 9.071005862482601775216264889747, 10.44367345375708813088476170585, 11.18608451691648590923732454829, 11.95583115048023684385273986299

Graph of the $Z$-function along the critical line