L(s) = 1 | + (1.99 + 0.104i)2-s + (−5.07 − 6.26i)3-s + (−3.98 − 0.419i)4-s + (−10.9 + 2.26i)5-s + (−9.46 − 13.0i)6-s + (15.9 + 9.35i)7-s + (−23.6 − 3.75i)8-s + (−7.90 + 37.1i)9-s + (−22.0 + 3.36i)10-s + (24.3 − 5.17i)11-s + (17.6 + 27.1i)12-s + (29.1 + 14.8i)13-s + (30.9 + 20.3i)14-s + (69.7 + 57.1i)15-s + (−15.4 − 3.29i)16-s + (−16.7 − 43.7i)17-s + ⋯ |
L(s) = 1 | + (0.705 + 0.0369i)2-s + (−0.976 − 1.20i)3-s + (−0.498 − 0.0523i)4-s + (−0.979 + 0.202i)5-s + (−0.644 − 0.886i)6-s + (0.862 + 0.505i)7-s + (−1.04 − 0.165i)8-s + (−0.292 + 1.37i)9-s + (−0.698 + 0.106i)10-s + (0.667 − 0.141i)11-s + (0.423 + 0.652i)12-s + (0.622 + 0.317i)13-s + (0.589 + 0.388i)14-s + (1.20 + 0.983i)15-s + (−0.242 − 0.0514i)16-s + (−0.239 − 0.623i)17-s + ⋯ |
Λ(s)=(=(175s/2ΓC(s)L(s)(0.497−0.867i)Λ(4−s)
Λ(s)=(=(175s/2ΓC(s+3/2)L(s)(0.497−0.867i)Λ(1−s)
Degree: |
2 |
Conductor: |
175
= 52⋅7
|
Sign: |
0.497−0.867i
|
Analytic conductor: |
10.3253 |
Root analytic conductor: |
3.21330 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ175(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 175, ( :3/2), 0.497−0.867i)
|
Particular Values
L(2) |
≈ |
0.667798+0.386679i |
L(21) |
≈ |
0.667798+0.386679i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(10.9−2.26i)T |
| 7 | 1+(−15.9−9.35i)T |
good | 2 | 1+(−1.99−0.104i)T+(7.95+0.836i)T2 |
| 3 | 1+(5.07+6.26i)T+(−5.61+26.4i)T2 |
| 11 | 1+(−24.3+5.17i)T+(1.21e3−541.i)T2 |
| 13 | 1+(−29.1−14.8i)T+(1.29e3+1.77e3i)T2 |
| 17 | 1+(16.7+43.7i)T+(−3.65e3+3.28e3i)T2 |
| 19 | 1+(−3.73−35.5i)T+(−6.70e3+1.42e3i)T2 |
| 23 | 1+(11.4−218.i)T+(−1.21e4−1.27e3i)T2 |
| 29 | 1+(130.−179.i)T+(−7.53e3−2.31e4i)T2 |
| 31 | 1+(−38.2+85.8i)T+(−1.99e4−2.21e4i)T2 |
| 37 | 1+(218.−141.i)T+(2.06e4−4.62e4i)T2 |
| 41 | 1+(−36.1+11.7i)T+(5.57e4−4.05e4i)T2 |
| 43 | 1+(−119.−119.i)T+7.95e4iT2 |
| 47 | 1+(340.+130.i)T+(7.71e4+6.94e4i)T2 |
| 53 | 1+(224.−181.i)T+(3.09e4−1.45e5i)T2 |
| 59 | 1+(392.−435.i)T+(−2.14e4−2.04e5i)T2 |
| 61 | 1+(−650.+585.i)T+(2.37e4−2.25e5i)T2 |
| 67 | 1+(586.−225.i)T+(2.23e5−2.01e5i)T2 |
| 71 | 1+(−783.−569.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(96.8−149.i)T+(−1.58e5−3.55e5i)T2 |
| 79 | 1+(128.+289.i)T+(−3.29e5+3.66e5i)T2 |
| 83 | 1+(−129.+819.i)T+(−5.43e5−1.76e5i)T2 |
| 89 | 1+(−741.−823.i)T+(−7.36e4+7.01e5i)T2 |
| 97 | 1+(−35.9−226.i)T+(−8.68e5+2.82e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.27614285286908604501844255589, −11.66157934007288600125349288777, −11.17630694241959436138186052628, −9.190729167976256198074417697590, −8.070590272879412816223406255998, −7.03280531367928166600405101006, −5.91384173699896346604626647341, −4.98032359795220412107836473226, −3.60889845611392371008733093458, −1.34257482556512106426821620744,
0.36508346878130150013121490396, 3.75856272016217531664709493375, 4.34722212751535893543575531973, 5.10928050790918127037660439613, 6.40144734632431423821870812706, 8.152196483407548596378831222292, 9.071005862482601775216264889747, 10.44367345375708813088476170585, 11.18608451691648590923732454829, 11.95583115048023684385273986299