L(s) = 1 | − 2-s + i·3-s + 4-s − 2i·5-s − i·6-s − 8-s − 9-s + 2i·10-s + 4i·11-s + i·12-s − 2·13-s + 2·15-s + 16-s + 18-s − 4·19-s − 2i·20-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.577i·3-s + 0.5·4-s − 0.894i·5-s − 0.408i·6-s − 0.353·8-s − 0.333·9-s + 0.632i·10-s + 1.20i·11-s + 0.288i·12-s − 0.554·13-s + 0.516·15-s + 0.250·16-s + 0.235·18-s − 0.917·19-s − 0.447i·20-s + ⋯ |
Λ(s)=(=(1734s/2ΓC(s)L(s)(−0.970+0.242i)Λ(2−s)
Λ(s)=(=(1734s/2ΓC(s+1/2)L(s)(−0.970+0.242i)Λ(1−s)
Degree: |
2 |
Conductor: |
1734
= 2⋅3⋅172
|
Sign: |
−0.970+0.242i
|
Analytic conductor: |
13.8460 |
Root analytic conductor: |
3.72102 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1734(577,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 1734, ( :1/2), −0.970+0.242i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1−iT |
| 17 | 1 |
good | 5 | 1+2iT−5T2 |
| 7 | 1−7T2 |
| 11 | 1−4iT−11T2 |
| 13 | 1+2T+13T2 |
| 19 | 1+4T+19T2 |
| 23 | 1−23T2 |
| 29 | 1+10iT−29T2 |
| 31 | 1−8iT−31T2 |
| 37 | 1+2iT−37T2 |
| 41 | 1+10iT−41T2 |
| 43 | 1+12T+43T2 |
| 47 | 1+47T2 |
| 53 | 1+6T+53T2 |
| 59 | 1+12T+59T2 |
| 61 | 1−10iT−61T2 |
| 67 | 1+12T+67T2 |
| 71 | 1−71T2 |
| 73 | 1−10iT−73T2 |
| 79 | 1−8iT−79T2 |
| 83 | 1+4T+83T2 |
| 89 | 1+6T+89T2 |
| 97 | 1+14iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.933761392799839826898100758992, −8.433760468622332108854992008419, −7.48720674231698928069959600385, −6.72187031728737423164665189200, −5.62162483568493530275223343667, −4.74903973721194273586276255785, −4.10371494679489060674602657297, −2.66795200858653271220835373618, −1.61730430388947983317664254113, 0,
1.53145053578433420290544987660, 2.73718349619107287341725545787, 3.37270404614000534435414361942, 4.88089984248490371332633681887, 6.09997107027575999209746548857, 6.53071028041173935888121967469, 7.36640210656233403252744450253, 8.099035156557818667115623743402, 8.780335538845723747815883561169