Properties

Label 2-1734-17.16-c1-0-34
Degree 22
Conductor 17341734
Sign 0.970+0.242i-0.970 + 0.242i
Analytic cond. 13.846013.8460
Root an. cond. 3.721023.72102
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 11

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + i·3-s + 4-s − 2i·5-s i·6-s − 8-s − 9-s + 2i·10-s + 4i·11-s + i·12-s − 2·13-s + 2·15-s + 16-s + 18-s − 4·19-s − 2i·20-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577i·3-s + 0.5·4-s − 0.894i·5-s − 0.408i·6-s − 0.353·8-s − 0.333·9-s + 0.632i·10-s + 1.20i·11-s + 0.288i·12-s − 0.554·13-s + 0.516·15-s + 0.250·16-s + 0.235·18-s − 0.917·19-s − 0.447i·20-s + ⋯

Functional equation

Λ(s)=(1734s/2ΓC(s)L(s)=((0.970+0.242i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.970 + 0.242i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1734s/2ΓC(s+1/2)L(s)=((0.970+0.242i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.970 + 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 17341734    =    231722 \cdot 3 \cdot 17^{2}
Sign: 0.970+0.242i-0.970 + 0.242i
Analytic conductor: 13.846013.8460
Root analytic conductor: 3.721023.72102
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1734(577,)\chi_{1734} (577, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 11
Selberg data: (2, 1734, ( :1/2), 0.970+0.242i)(2,\ 1734,\ (\ :1/2),\ -0.970 + 0.242i)

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+T 1 + T
3 1iT 1 - iT
17 1 1
good5 1+2iT5T2 1 + 2iT - 5T^{2}
7 17T2 1 - 7T^{2}
11 14iT11T2 1 - 4iT - 11T^{2}
13 1+2T+13T2 1 + 2T + 13T^{2}
19 1+4T+19T2 1 + 4T + 19T^{2}
23 123T2 1 - 23T^{2}
29 1+10iT29T2 1 + 10iT - 29T^{2}
31 18iT31T2 1 - 8iT - 31T^{2}
37 1+2iT37T2 1 + 2iT - 37T^{2}
41 1+10iT41T2 1 + 10iT - 41T^{2}
43 1+12T+43T2 1 + 12T + 43T^{2}
47 1+47T2 1 + 47T^{2}
53 1+6T+53T2 1 + 6T + 53T^{2}
59 1+12T+59T2 1 + 12T + 59T^{2}
61 110iT61T2 1 - 10iT - 61T^{2}
67 1+12T+67T2 1 + 12T + 67T^{2}
71 171T2 1 - 71T^{2}
73 110iT73T2 1 - 10iT - 73T^{2}
79 18iT79T2 1 - 8iT - 79T^{2}
83 1+4T+83T2 1 + 4T + 83T^{2}
89 1+6T+89T2 1 + 6T + 89T^{2}
97 1+14iT97T2 1 + 14iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.933761392799839826898100758992, −8.433760468622332108854992008419, −7.48720674231698928069959600385, −6.72187031728737423164665189200, −5.62162483568493530275223343667, −4.74903973721194273586276255785, −4.10371494679489060674602657297, −2.66795200858653271220835373618, −1.61730430388947983317664254113, 0, 1.53145053578433420290544987660, 2.73718349619107287341725545787, 3.37270404614000534435414361942, 4.88089984248490371332633681887, 6.09997107027575999209746548857, 6.53071028041173935888121967469, 7.36640210656233403252744450253, 8.099035156557818667115623743402, 8.780335538845723747815883561169

Graph of the ZZ-function along the critical line