Properties

Label 1734.577
Modulus $1734$
Conductor $17$
Order $2$
Real yes
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1734, base_ring=CyclotomicField(2)) M = H._module chi = DirichletCharacter(H, M([0,1]))
 
Copy content pari:[g,chi] = znchar(Mod(577,1734))
 

Basic properties

Modulus: \(1734\)
Conductor: \(17\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(2\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: yes
Primitive: no, induced from \(\chi_{17}(16,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1734.b

\(\chi_{1734}(577,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{17}) \)

Values on generators

\((1157,1159)\) → \((1,-1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 1734 }(577, a) \) \(1\)\(1\)\(-1\)\(-1\)\(-1\)\(1\)\(1\)\(-1\)\(1\)\(-1\)\(-1\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1734 }(577,a) \;\) at \(\;a = \) e.g. 2