Properties

Label 2-1734-17.16-c1-0-26
Degree $2$
Conductor $1734$
Sign $0.970 - 0.242i$
Analytic cond. $13.8460$
Root an. cond. $3.72102$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + i·3-s + 4-s + i·6-s − 2i·7-s + 8-s − 9-s + i·12-s + 2·13-s − 2i·14-s + 16-s − 18-s + 4·19-s + 2·21-s + 6i·23-s + i·24-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577i·3-s + 0.5·4-s + 0.408i·6-s − 0.755i·7-s + 0.353·8-s − 0.333·9-s + 0.288i·12-s + 0.554·13-s − 0.534i·14-s + 0.250·16-s − 0.235·18-s + 0.917·19-s + 0.436·21-s + 1.25i·23-s + 0.204i·24-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 - 0.242i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1734 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.970 - 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1734\)    =    \(2 \cdot 3 \cdot 17^{2}\)
Sign: $0.970 - 0.242i$
Analytic conductor: \(13.8460\)
Root analytic conductor: \(3.72102\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1734} (577, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1734,\ (\ :1/2),\ 0.970 - 0.242i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.866837217\)
\(L(\frac12)\) \(\approx\) \(2.866837217\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 - iT \)
17 \( 1 \)
good5 \( 1 - 5T^{2} \)
7 \( 1 + 2iT - 7T^{2} \)
11 \( 1 - 11T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
19 \( 1 - 4T + 19T^{2} \)
23 \( 1 - 6iT - 23T^{2} \)
29 \( 1 - 29T^{2} \)
31 \( 1 + 10iT - 31T^{2} \)
37 \( 1 - 8iT - 37T^{2} \)
41 \( 1 + 6iT - 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 - 12T + 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 - 12T + 59T^{2} \)
61 \( 1 + 8iT - 61T^{2} \)
67 \( 1 + 4T + 67T^{2} \)
71 \( 1 - 6iT - 71T^{2} \)
73 \( 1 - 2iT - 73T^{2} \)
79 \( 1 - 10iT - 79T^{2} \)
83 \( 1 + 12T + 83T^{2} \)
89 \( 1 + 18T + 89T^{2} \)
97 \( 1 - 14iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.535250749395966050817422340301, −8.551567310141174737045651428910, −7.59855446566555361017515998893, −6.95929998615006268455890206570, −5.88496552626821830100945001989, −5.25797853329593195045243327853, −4.21228263715662767145466959834, −3.66575727459453219011272480671, −2.64494159055079278065636157421, −1.10724594754821778575580921776, 1.15271937090218071845493446153, 2.44006914185019566497453519431, 3.17590722233640677677728057480, 4.36646658667985856916874935541, 5.33661799282712875273111829402, 5.97177801198809475079072401890, 6.82648587556016349391726515741, 7.49103202799566771469869271032, 8.600393498931086055472204132468, 8.979173196591471656776370496740

Graph of the $Z$-function along the critical line