Properties

Label 2-1710-1.1-c1-0-1
Degree $2$
Conductor $1710$
Sign $1$
Analytic cond. $13.6544$
Root an. cond. $3.69518$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 5·7-s − 8-s − 10-s + 4·11-s − 13-s + 5·14-s + 16-s + 3·17-s + 19-s + 20-s − 4·22-s − 7·23-s + 25-s + 26-s − 5·28-s + 3·29-s − 2·31-s − 32-s − 3·34-s − 5·35-s − 2·37-s − 38-s − 40-s + 6·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 1.88·7-s − 0.353·8-s − 0.316·10-s + 1.20·11-s − 0.277·13-s + 1.33·14-s + 1/4·16-s + 0.727·17-s + 0.229·19-s + 0.223·20-s − 0.852·22-s − 1.45·23-s + 1/5·25-s + 0.196·26-s − 0.944·28-s + 0.557·29-s − 0.359·31-s − 0.176·32-s − 0.514·34-s − 0.845·35-s − 0.328·37-s − 0.162·38-s − 0.158·40-s + 0.937·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1710 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1710\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(13.6544\)
Root analytic conductor: \(3.69518\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1710,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.044058985\)
\(L(\frac12)\) \(\approx\) \(1.044058985\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
19 \( 1 - T \)
good7 \( 1 + 5 T + p T^{2} \) 1.7.f
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
23 \( 1 + 7 T + p T^{2} \) 1.23.h
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 13 T + p T^{2} \) 1.53.an
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.330690351644114393799101327461, −8.893742724875141354033404930208, −7.69597605358489864554393194674, −6.90040839368604728165720643072, −6.22998341966296941105214493465, −5.68225202127756533842843898175, −4.05959605040213207878208190727, −3.27500002241322509681556517668, −2.22266410857107931977491765784, −0.77331139176634990855171841029, 0.77331139176634990855171841029, 2.22266410857107931977491765784, 3.27500002241322509681556517668, 4.05959605040213207878208190727, 5.68225202127756533842843898175, 6.22998341966296941105214493465, 6.90040839368604728165720643072, 7.69597605358489864554393194674, 8.893742724875141354033404930208, 9.330690351644114393799101327461

Graph of the $Z$-function along the critical line