L(s) = 1 | + (−1.23 − 2.13i)2-s + (1.62 + 0.605i)3-s + (−2.04 + 3.54i)4-s + 1.91·5-s + (−0.709 − 4.21i)6-s + (−0.324 + 0.562i)7-s + 5.16·8-s + (2.26 + 1.96i)9-s + (−2.36 − 4.09i)10-s + (2.93 − 5.07i)11-s + (−5.46 + 4.51i)12-s + (0.327 − 0.567i)13-s + 1.60·14-s + (3.10 + 1.15i)15-s + (−2.27 − 3.94i)16-s + (−1.93 + 3.35i)17-s + ⋯ |
L(s) = 1 | + (−0.872 − 1.51i)2-s + (0.936 + 0.349i)3-s + (−1.02 + 1.77i)4-s + 0.856·5-s + (−0.289 − 1.72i)6-s + (−0.122 + 0.212i)7-s + 1.82·8-s + (0.755 + 0.654i)9-s + (−0.747 − 1.29i)10-s + (0.884 − 1.53i)11-s + (−1.57 + 1.30i)12-s + (0.0908 − 0.157i)13-s + 0.428·14-s + (0.802 + 0.299i)15-s + (−0.569 − 0.986i)16-s + (−0.469 + 0.813i)17-s + ⋯ |
Λ(s)=(=(171s/2ΓC(s)L(s)(0.185+0.982i)Λ(2−s)
Λ(s)=(=(171s/2ΓC(s+1/2)L(s)(0.185+0.982i)Λ(1−s)
Degree: |
2 |
Conductor: |
171
= 32⋅19
|
Sign: |
0.185+0.982i
|
Analytic conductor: |
1.36544 |
Root analytic conductor: |
1.16852 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ171(106,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 171, ( :1/2), 0.185+0.982i)
|
Particular Values
L(1) |
≈ |
0.831057−0.688829i |
L(21) |
≈ |
0.831057−0.688829i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.62−0.605i)T |
| 19 | 1+(4.28+0.802i)T |
good | 2 | 1+(1.23+2.13i)T+(−1+1.73i)T2 |
| 5 | 1−1.91T+5T2 |
| 7 | 1+(0.324−0.562i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−2.93+5.07i)T+(−5.5−9.52i)T2 |
| 13 | 1+(−0.327+0.567i)T+(−6.5−11.2i)T2 |
| 17 | 1+(1.93−3.35i)T+(−8.5−14.7i)T2 |
| 23 | 1+(−0.961+1.66i)T+(−11.5−19.9i)T2 |
| 29 | 1+6.53T+29T2 |
| 31 | 1+(−1.54−2.67i)T+(−15.5+26.8i)T2 |
| 37 | 1−2.23T+37T2 |
| 41 | 1+6.96T+41T2 |
| 43 | 1+(−4.46−7.74i)T+(−21.5+37.2i)T2 |
| 47 | 1−11.5T+47T2 |
| 53 | 1+(6.35+11.0i)T+(−26.5+45.8i)T2 |
| 59 | 1+14.3T+59T2 |
| 61 | 1+10.3T+61T2 |
| 67 | 1+(0.381−0.661i)T+(−33.5−58.0i)T2 |
| 71 | 1+(0.299−0.519i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−1.75+3.04i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−2.13−3.69i)T+(−39.5+68.4i)T2 |
| 83 | 1+(3.29−5.71i)T+(−41.5−71.8i)T2 |
| 89 | 1+(−2.41−4.19i)T+(−44.5+77.0i)T2 |
| 97 | 1+(1.19+2.06i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.51591914886383858997629471552, −11.11546447082412116239057201466, −10.56772799699368838915763253669, −9.422466710067938006451847679038, −8.923725031885829404162684082718, −8.115737977828802583096742020478, −6.16514109002018044078096039526, −4.07212554775304170138788479869, −2.96959485434975587517884855823, −1.71228902011864065981846341090,
1.88000843457016246218744997059, 4.39297966952684168607043247205, 6.03666164506989404516090252639, 6.98769665962023641389229122204, 7.61268050746769297682594071629, 9.083139576180760988120543481853, 9.325887357725773294935539976769, 10.30261371659872136522659335993, 12.26855229063827268401150450304, 13.51671888541406530862662996935