L(s) = 1 | + (−1.23 − 2.13i)2-s + (1.62 + 0.605i)3-s + (−2.04 + 3.54i)4-s + 1.91·5-s + (−0.709 − 4.21i)6-s + (−0.324 + 0.562i)7-s + 5.16·8-s + (2.26 + 1.96i)9-s + (−2.36 − 4.09i)10-s + (2.93 − 5.07i)11-s + (−5.46 + 4.51i)12-s + (0.327 − 0.567i)13-s + 1.60·14-s + (3.10 + 1.15i)15-s + (−2.27 − 3.94i)16-s + (−1.93 + 3.35i)17-s + ⋯ |
L(s) = 1 | + (−0.872 − 1.51i)2-s + (0.936 + 0.349i)3-s + (−1.02 + 1.77i)4-s + 0.856·5-s + (−0.289 − 1.72i)6-s + (−0.122 + 0.212i)7-s + 1.82·8-s + (0.755 + 0.654i)9-s + (−0.747 − 1.29i)10-s + (0.884 − 1.53i)11-s + (−1.57 + 1.30i)12-s + (0.0908 − 0.157i)13-s + 0.428·14-s + (0.802 + 0.299i)15-s + (−0.569 − 0.986i)16-s + (−0.469 + 0.813i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.185 + 0.982i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 171 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.185 + 0.982i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.831057 - 0.688829i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.831057 - 0.688829i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-1.62 - 0.605i)T \) |
| 19 | \( 1 + (4.28 + 0.802i)T \) |
good | 2 | \( 1 + (1.23 + 2.13i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 - 1.91T + 5T^{2} \) |
| 7 | \( 1 + (0.324 - 0.562i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.93 + 5.07i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.327 + 0.567i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (1.93 - 3.35i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-0.961 + 1.66i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 6.53T + 29T^{2} \) |
| 31 | \( 1 + (-1.54 - 2.67i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 2.23T + 37T^{2} \) |
| 41 | \( 1 + 6.96T + 41T^{2} \) |
| 43 | \( 1 + (-4.46 - 7.74i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 11.5T + 47T^{2} \) |
| 53 | \( 1 + (6.35 + 11.0i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 14.3T + 59T^{2} \) |
| 61 | \( 1 + 10.3T + 61T^{2} \) |
| 67 | \( 1 + (0.381 - 0.661i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (0.299 - 0.519i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-1.75 + 3.04i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.13 - 3.69i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3.29 - 5.71i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-2.41 - 4.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (1.19 + 2.06i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.51591914886383858997629471552, −11.11546447082412116239057201466, −10.56772799699368838915763253669, −9.422466710067938006451847679038, −8.923725031885829404162684082718, −8.115737977828802583096742020478, −6.16514109002018044078096039526, −4.07212554775304170138788479869, −2.96959485434975587517884855823, −1.71228902011864065981846341090,
1.88000843457016246218744997059, 4.39297966952684168607043247205, 6.03666164506989404516090252639, 6.98769665962023641389229122204, 7.61268050746769297682594071629, 9.083139576180760988120543481853, 9.325887357725773294935539976769, 10.30261371659872136522659335993, 12.26855229063827268401150450304, 13.51671888541406530862662996935