L(s) = 1 | + 2-s + 3-s + 4-s − 5-s + 6-s − 2·7-s + 8-s − 2·9-s − 10-s − 5·11-s + 12-s + 13-s − 2·14-s − 15-s + 16-s − 2·17-s − 2·18-s + 4·19-s − 20-s − 2·21-s − 5·22-s − 6·23-s + 24-s − 4·25-s + 26-s − 5·27-s − 2·28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.755·7-s + 0.353·8-s − 2/3·9-s − 0.316·10-s − 1.50·11-s + 0.288·12-s + 0.277·13-s − 0.534·14-s − 0.258·15-s + 1/4·16-s − 0.485·17-s − 0.471·18-s + 0.917·19-s − 0.223·20-s − 0.436·21-s − 1.06·22-s − 1.25·23-s + 0.204·24-s − 4/5·25-s + 0.196·26-s − 0.962·27-s − 0.377·28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1682 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1682 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 - T \) | |
| 29 | \( 1 \) | |
good | 3 | \( 1 - T + p T^{2} \) | 1.3.ab |
| 5 | \( 1 + T + p T^{2} \) | 1.5.b |
| 7 | \( 1 + 2 T + p T^{2} \) | 1.7.c |
| 11 | \( 1 + 5 T + p T^{2} \) | 1.11.f |
| 13 | \( 1 - T + p T^{2} \) | 1.13.ab |
| 17 | \( 1 + 2 T + p T^{2} \) | 1.17.c |
| 19 | \( 1 - 4 T + p T^{2} \) | 1.19.ae |
| 23 | \( 1 + 6 T + p T^{2} \) | 1.23.g |
| 31 | \( 1 - 5 T + p T^{2} \) | 1.31.af |
| 37 | \( 1 + 8 T + p T^{2} \) | 1.37.i |
| 41 | \( 1 - 10 T + p T^{2} \) | 1.41.ak |
| 43 | \( 1 + 9 T + p T^{2} \) | 1.43.j |
| 47 | \( 1 + 3 T + p T^{2} \) | 1.47.d |
| 53 | \( 1 + T + p T^{2} \) | 1.53.b |
| 59 | \( 1 - 10 T + p T^{2} \) | 1.59.ak |
| 61 | \( 1 + 10 T + p T^{2} \) | 1.61.k |
| 67 | \( 1 + 8 T + p T^{2} \) | 1.67.i |
| 71 | \( 1 - 8 T + p T^{2} \) | 1.71.ai |
| 73 | \( 1 + 16 T + p T^{2} \) | 1.73.q |
| 79 | \( 1 + T + p T^{2} \) | 1.79.b |
| 83 | \( 1 - 14 T + p T^{2} \) | 1.83.ao |
| 89 | \( 1 - 14 T + p T^{2} \) | 1.89.ao |
| 97 | \( 1 - 2 T + p T^{2} \) | 1.97.ac |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.834991469360265298248768761262, −7.981323481341602001397454261789, −7.54687100875244563304022138795, −6.37414880990567485024273048720, −5.68732702991890910628535109336, −4.78511645300011158111984238366, −3.65396093440243004713046296429, −3.04484433674425599628087534654, −2.15710567472534577568345191269, 0,
2.15710567472534577568345191269, 3.04484433674425599628087534654, 3.65396093440243004713046296429, 4.78511645300011158111984238366, 5.68732702991890910628535109336, 6.37414880990567485024273048720, 7.54687100875244563304022138795, 7.981323481341602001397454261789, 8.834991469360265298248768761262