Properties

Label 2-1682-1.1-c1-0-64
Degree $2$
Conductor $1682$
Sign $-1$
Analytic cond. $13.4308$
Root an. cond. $3.66481$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s − 2·7-s + 8-s − 2·9-s − 10-s − 5·11-s + 12-s + 13-s − 2·14-s − 15-s + 16-s − 2·17-s − 2·18-s + 4·19-s − 20-s − 2·21-s − 5·22-s − 6·23-s + 24-s − 4·25-s + 26-s − 5·27-s − 2·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.755·7-s + 0.353·8-s − 2/3·9-s − 0.316·10-s − 1.50·11-s + 0.288·12-s + 0.277·13-s − 0.534·14-s − 0.258·15-s + 1/4·16-s − 0.485·17-s − 0.471·18-s + 0.917·19-s − 0.223·20-s − 0.436·21-s − 1.06·22-s − 1.25·23-s + 0.204·24-s − 4/5·25-s + 0.196·26-s − 0.962·27-s − 0.377·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1682 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1682 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1682\)    =    \(2 \cdot 29^{2}\)
Sign: $-1$
Analytic conductor: \(13.4308\)
Root analytic conductor: \(3.66481\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1682,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
29 \( 1 \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 9 T + p T^{2} \) 1.43.j
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.834991469360265298248768761262, −7.981323481341602001397454261789, −7.54687100875244563304022138795, −6.37414880990567485024273048720, −5.68732702991890910628535109336, −4.78511645300011158111984238366, −3.65396093440243004713046296429, −3.04484433674425599628087534654, −2.15710567472534577568345191269, 0, 2.15710567472534577568345191269, 3.04484433674425599628087534654, 3.65396093440243004713046296429, 4.78511645300011158111984238366, 5.68732702991890910628535109336, 6.37414880990567485024273048720, 7.54687100875244563304022138795, 7.981323481341602001397454261789, 8.834991469360265298248768761262

Graph of the $Z$-function along the critical line