L(s) = 1 | − i·3-s − i·5-s + i·7-s − 9-s + 2·11-s − 15-s − 2i·17-s + 21-s − 25-s + i·27-s − 2i·33-s + 35-s + i·45-s − 49-s − 2·51-s + ⋯ |
L(s) = 1 | − i·3-s − i·5-s + i·7-s − 9-s + 2·11-s − 15-s − 2i·17-s + 21-s − 25-s + i·27-s − 2i·33-s + 35-s + i·45-s − 49-s − 2·51-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.171853790\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.171853790\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + iT \) |
| 5 | \( 1 + iT \) |
| 7 | \( 1 - iT \) |
good | 11 | \( 1 - 2T + T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + 2iT - T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 + 2T + T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.004259295231097020379755249834, −8.841075251881717388011387536461, −7.75850373884608958141230820740, −6.92381836269622197571106504118, −6.16281940535967806674520795658, −5.38052600781253761979822137407, −4.49298364270418865009472036733, −3.20201968297314379161139723705, −2.04716698239093996967656510522, −1.01801164324861966358658862034,
1.65659170779402261808463021296, 3.25607638351579060458976985379, 3.90231753188054546753137535744, 4.38711145040366245754871301621, 5.92310112654424420066303783948, 6.41604577779688997487994077624, 7.25913818085555142151326955995, 8.292556042668229174681115285068, 9.057527061169853624473468530073, 9.949151063465877945349328240979