Properties

Label 2.1680.8t11.d
Dimension $2$
Group $Q_8:C_2$
Conductor $1680$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$Q_8:C_2$
Conductor:\(1680\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Artin number field: Galois closure of 8.0.3457440000.3
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{15}, \sqrt{-21})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 109 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 6 + 57\cdot 109 + 33\cdot 109^{3} + 49\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 9 + 15\cdot 109 + 6\cdot 109^{2} + 23\cdot 109^{3} + 49\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 10 + 68\cdot 109 + 51\cdot 109^{2} + 54\cdot 109^{3} + 40\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 43 + 73\cdot 109 + 96\cdot 109^{2} + 67\cdot 109^{3} + 52\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 66 + 35\cdot 109 + 12\cdot 109^{2} + 41\cdot 109^{3} + 56\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 99 + 40\cdot 109 + 57\cdot 109^{2} + 54\cdot 109^{3} + 68\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 100 + 93\cdot 109 + 102\cdot 109^{2} + 85\cdot 109^{3} + 59\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 103 + 51\cdot 109 + 108\cdot 109^{2} + 75\cdot 109^{3} + 59\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,4,8,5)(2,3,7,6)$
$(1,7)(2,8)(3,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$2$ $2$ $(1,7)(2,8)(3,5)(4,6)$ $0$ $0$
$2$ $2$ $(1,6)(2,4)(3,8)(5,7)$ $0$ $0$
$2$ $2$ $(2,7)(3,6)$ $0$ $0$
$1$ $4$ $(1,4,8,5)(2,3,7,6)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,5,8,4)(2,6,7,3)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,4,8,5)(2,6,7,3)$ $0$ $0$
$2$ $4$ $(1,7,8,2)(3,4,6,5)$ $0$ $0$
$2$ $4$ $(1,6,8,3)(2,5,7,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.