| L(s) = 1 | + (2.81 − 0.285i)2-s + 3i·3-s + (7.83 − 1.60i)4-s + 17.9·5-s + (0.857 + 8.44i)6-s + (4.95 − 17.8i)7-s + (21.5 − 6.77i)8-s − 9·9-s + (50.6 − 5.14i)10-s − 49.0·11-s + (4.82 + 23.5i)12-s − 3.98·13-s + (8.83 − 51.6i)14-s + 53.9i·15-s + (58.8 − 25.2i)16-s − 25.2i·17-s + ⋯ |
| L(s) = 1 | + (0.994 − 0.101i)2-s + 0.577i·3-s + (0.979 − 0.201i)4-s + 1.60·5-s + (0.0583 + 0.574i)6-s + (0.267 − 0.963i)7-s + (0.954 − 0.299i)8-s − 0.333·9-s + (1.60 − 0.162i)10-s − 1.34·11-s + (0.116 + 0.565i)12-s − 0.0849·13-s + (0.168 − 0.985i)14-s + 0.928i·15-s + (0.919 − 0.394i)16-s − 0.360i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0330i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0330i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(3.85000 + 0.0636809i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.85000 + 0.0636809i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-2.81 + 0.285i)T \) |
| 3 | \( 1 - 3iT \) |
| 7 | \( 1 + (-4.95 + 17.8i)T \) |
| good | 5 | \( 1 - 17.9T + 125T^{2} \) |
| 11 | \( 1 + 49.0T + 1.33e3T^{2} \) |
| 13 | \( 1 + 3.98T + 2.19e3T^{2} \) |
| 17 | \( 1 + 25.2iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 134. iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 79.8iT - 1.21e4T^{2} \) |
| 29 | \( 1 - 210. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 107.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 51.8iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 414. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 186.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 517.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 442. iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 225. iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 111.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 544.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 942. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 96.0iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 1.22e3iT - 4.93e5T^{2} \) |
| 83 | \( 1 + 365. iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 395. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + 1.07e3iT - 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.75797517893249933721988712961, −11.17792836836624102335053728721, −10.27686757523772778890580003942, −9.910299742093184813161999274725, −8.077163209309565019518951198298, −6.70172779433412838342784034547, −5.55341704270376018795492816726, −4.80619012462533202447675096375, −3.22312334494018403576443058536, −1.78477662094404150854377140717,
1.98216784628198458567260955589, 2.72046078874176814447864130153, 5.10129454751239279586661557270, 5.67188460633542311363042269565, 6.68884293966003895048719733767, 7.987541841735820794342659006365, 9.307201284423389349139727853642, 10.53537758122929104618353957053, 11.55034474530674533926804054759, 12.72361224677691400538109286399