L(s) = 1 | + (1.33 − 0.474i)2-s − i·3-s + (1.54 − 1.26i)4-s − 1.58·5-s + (−0.474 − 1.33i)6-s + (2.37 + 1.15i)7-s + (1.46 − 2.42i)8-s − 9-s + (−2.10 + 0.750i)10-s − 2.26·11-s + (−1.26 − 1.54i)12-s − 0.548·13-s + (3.71 + 0.409i)14-s + 1.58i·15-s + (0.798 − 3.91i)16-s − 0.433i·17-s + ⋯ |
L(s) = 1 | + (0.941 − 0.335i)2-s − 0.577i·3-s + (0.774 − 0.632i)4-s − 0.706·5-s + (−0.193 − 0.543i)6-s + (0.899 + 0.436i)7-s + (0.517 − 0.855i)8-s − 0.333·9-s + (−0.665 + 0.237i)10-s − 0.681·11-s + (−0.365 − 0.447i)12-s − 0.152·13-s + (0.993 + 0.109i)14-s + 0.408i·15-s + (0.199 − 0.979i)16-s − 0.105i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.544 + 0.839i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.544 + 0.839i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.58377 - 0.860556i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.58377 - 0.860556i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.33 + 0.474i)T \) |
| 3 | \( 1 + iT \) |
| 7 | \( 1 + (-2.37 - 1.15i)T \) |
good | 5 | \( 1 + 1.58T + 5T^{2} \) |
| 11 | \( 1 + 2.26T + 11T^{2} \) |
| 13 | \( 1 + 0.548T + 13T^{2} \) |
| 17 | \( 1 + 0.433iT - 17T^{2} \) |
| 19 | \( 1 - 6.02iT - 19T^{2} \) |
| 23 | \( 1 - 8.24iT - 23T^{2} \) |
| 29 | \( 1 + 0.548iT - 29T^{2} \) |
| 31 | \( 1 - 7.50T + 31T^{2} \) |
| 37 | \( 1 + 4.21iT - 37T^{2} \) |
| 41 | \( 1 + 7.09iT - 41T^{2} \) |
| 43 | \( 1 + 1.82T + 43T^{2} \) |
| 47 | \( 1 + 11.5T + 47T^{2} \) |
| 53 | \( 1 + 3.71iT - 53T^{2} \) |
| 59 | \( 1 + 11.5iT - 59T^{2} \) |
| 61 | \( 1 + 12.1T + 61T^{2} \) |
| 67 | \( 1 - 9.35T + 67T^{2} \) |
| 71 | \( 1 - 1.27iT - 71T^{2} \) |
| 73 | \( 1 + 0.867iT - 73T^{2} \) |
| 79 | \( 1 + 10.3iT - 79T^{2} \) |
| 83 | \( 1 - 6.13iT - 83T^{2} \) |
| 89 | \( 1 - 7.95iT - 89T^{2} \) |
| 97 | \( 1 + 19.1iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.49794020178364222972757607283, −11.80312341490752834056689062626, −11.13816214408735581641470631249, −9.878185559972681959748298760115, −8.133752688044536737171495837295, −7.46866623244886268202343845171, −5.96396559338459231222415025737, −4.96337072797544825378143763595, −3.51599011731338244549462232509, −1.88743078755274910270504913449,
2.81904083217511134220079692237, 4.38286951338907608167278664126, 4.91618852077979261563307045377, 6.52312283240313957878862198686, 7.75852364273287657327217624652, 8.489854466145166326096668437929, 10.30072316593476333634056788856, 11.18872516303756367468196727344, 11.88950703753420643932188706046, 13.09104565212051897004592458199