L(s) = 1 | + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + i·5-s + (−0.866 − 0.5i)7-s + 0.999i·8-s + (−0.5 − 0.866i)10-s + (−0.633 + 0.366i)11-s + (2.59 + 2.5i)13-s + 0.999·14-s + (−0.5 − 0.866i)16-s + (2.86 − 4.96i)17-s + (−1.26 − 0.732i)19-s + (0.866 + 0.499i)20-s + (0.366 − 0.633i)22-s + (−0.633 − 1.09i)23-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + 0.447i·5-s + (−0.327 − 0.188i)7-s + 0.353i·8-s + (−0.158 − 0.273i)10-s + (−0.191 + 0.110i)11-s + (0.720 + 0.693i)13-s + 0.267·14-s + (−0.125 − 0.216i)16-s + (0.695 − 1.20i)17-s + (−0.290 − 0.167i)19-s + (0.193 + 0.111i)20-s + (0.0780 − 0.135i)22-s + (−0.132 − 0.228i)23-s + ⋯ |
Λ(s)=(=(1638s/2ΓC(s)L(s)(0.702−0.711i)Λ(2−s)
Λ(s)=(=(1638s/2ΓC(s+1/2)L(s)(0.702−0.711i)Λ(1−s)
Degree: |
2 |
Conductor: |
1638
= 2⋅32⋅7⋅13
|
Sign: |
0.702−0.711i
|
Analytic conductor: |
13.0794 |
Root analytic conductor: |
3.61655 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1638(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1638, ( :1/2), 0.702−0.711i)
|
Particular Values
L(1) |
≈ |
1.202373553 |
L(21) |
≈ |
1.202373553 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.866−0.5i)T |
| 3 | 1 |
| 7 | 1+(0.866+0.5i)T |
| 13 | 1+(−2.59−2.5i)T |
good | 5 | 1−iT−5T2 |
| 11 | 1+(0.633−0.366i)T+(5.5−9.52i)T2 |
| 17 | 1+(−2.86+4.96i)T+(−8.5−14.7i)T2 |
| 19 | 1+(1.26+0.732i)T+(9.5+16.4i)T2 |
| 23 | 1+(0.633+1.09i)T+(−11.5+19.9i)T2 |
| 29 | 1+(1.5+2.59i)T+(−14.5+25.1i)T2 |
| 31 | 1−5.26iT−31T2 |
| 37 | 1+(−4.5+2.59i)T+(18.5−32.0i)T2 |
| 41 | 1+(−2.13+1.23i)T+(20.5−35.5i)T2 |
| 43 | 1+(6.09−10.5i)T+(−21.5−37.2i)T2 |
| 47 | 1−2.92iT−47T2 |
| 53 | 1+1.53T+53T2 |
| 59 | 1+(−9.29−5.36i)T+(29.5+51.0i)T2 |
| 61 | 1+(−5.86+10.1i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−10.0+5.83i)T+(33.5−58.0i)T2 |
| 71 | 1+(−12−6.92i)T+(35.5+61.4i)T2 |
| 73 | 1−11.3iT−73T2 |
| 79 | 1+3.80T+79T2 |
| 83 | 1−3.80iT−83T2 |
| 89 | 1+(2.19−1.26i)T+(44.5−77.0i)T2 |
| 97 | 1+(4.73+2.73i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.578182061141252313136735783895, −8.660126706929293786858066849659, −7.919355930016968679889211903476, −6.97384598195482195606025219356, −6.57570885602291142428691896438, −5.55966994112828345293916444993, −4.58060573958407133701005564718, −3.39629012528577938386168377036, −2.38792041070026350431281143392, −0.938097808351293858212214649540,
0.77608710007335953795635946107, 1.98471603129008609565344045543, 3.24065522181608972633226210324, 3.97814081166606241115861380771, 5.30636370700263271083463884035, 6.03058864238415102528057388854, 6.97223674339414195859844115084, 8.087220666973329506654922339726, 8.405245967650287882132009394256, 9.263563185062782030541912576948