Properties

Label 1638.2.bj.c
Level $1638$
Weight $2$
Character orbit 1638.bj
Analytic conductor $13.079$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1638,2,Mod(127,1638)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1638, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1638.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1638 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1638.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,2,0,0,0,0,0,-2,-6,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.0794958511\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 182)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{12}^{3} - \zeta_{12}) q^{2} + ( - \zeta_{12}^{2} + 1) q^{4} + \zeta_{12}^{3} q^{5} - \zeta_{12} q^{7} + \zeta_{12}^{3} q^{8} - \zeta_{12}^{2} q^{10} + ( - \zeta_{12}^{3} + \zeta_{12}^{2} + \cdots - 2) q^{11} + \cdots - \zeta_{12} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 2 q^{10} - 6 q^{11} + 4 q^{14} - 2 q^{16} + 8 q^{17} - 12 q^{19} - 2 q^{22} - 6 q^{23} + 16 q^{25} - 14 q^{26} - 6 q^{29} + 2 q^{35} + 18 q^{37} - 8 q^{38} - 4 q^{40} + 12 q^{41} - 14 q^{43}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1638\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(703\) \(911\)
\(\chi(n)\) \(1 - \zeta_{12}^{2}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
127.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 + 0.500000i 0 0.500000 0.866025i 1.00000i 0 −0.866025 0.500000i 1.00000i 0 −0.500000 0.866025i
127.2 0.866025 0.500000i 0 0.500000 0.866025i 1.00000i 0 0.866025 + 0.500000i 1.00000i 0 −0.500000 0.866025i
1135.1 −0.866025 0.500000i 0 0.500000 + 0.866025i 1.00000i 0 −0.866025 + 0.500000i 1.00000i 0 −0.500000 + 0.866025i
1135.2 0.866025 + 0.500000i 0 0.500000 + 0.866025i 1.00000i 0 0.866025 0.500000i 1.00000i 0 −0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1638.2.bj.c 4
3.b odd 2 1 182.2.m.a 4
12.b even 2 1 1456.2.cc.b 4
13.e even 6 1 inner 1638.2.bj.c 4
21.c even 2 1 1274.2.m.a 4
21.g even 6 1 1274.2.o.a 4
21.g even 6 1 1274.2.v.b 4
21.h odd 6 1 1274.2.o.b 4
21.h odd 6 1 1274.2.v.a 4
39.h odd 6 1 182.2.m.a 4
39.h odd 6 1 2366.2.d.k 4
39.i odd 6 1 2366.2.d.k 4
39.k even 12 1 2366.2.a.q 2
39.k even 12 1 2366.2.a.s 2
156.r even 6 1 1456.2.cc.b 4
273.u even 6 1 1274.2.m.a 4
273.x odd 6 1 1274.2.o.b 4
273.y even 6 1 1274.2.o.a 4
273.bp odd 6 1 1274.2.v.a 4
273.br even 6 1 1274.2.v.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
182.2.m.a 4 3.b odd 2 1
182.2.m.a 4 39.h odd 6 1
1274.2.m.a 4 21.c even 2 1
1274.2.m.a 4 273.u even 6 1
1274.2.o.a 4 21.g even 6 1
1274.2.o.a 4 273.y even 6 1
1274.2.o.b 4 21.h odd 6 1
1274.2.o.b 4 273.x odd 6 1
1274.2.v.a 4 21.h odd 6 1
1274.2.v.a 4 273.bp odd 6 1
1274.2.v.b 4 21.g even 6 1
1274.2.v.b 4 273.br even 6 1
1456.2.cc.b 4 12.b even 2 1
1456.2.cc.b 4 156.r even 6 1
1638.2.bj.c 4 1.a even 1 1 trivial
1638.2.bj.c 4 13.e even 6 1 inner
2366.2.a.q 2 39.k even 12 1
2366.2.a.s 2 39.k even 12 1
2366.2.d.k 4 39.h odd 6 1
2366.2.d.k 4 39.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1638, [\chi])\):

\( T_{5}^{2} + 1 \) Copy content Toggle raw display
\( T_{11}^{4} + 6T_{11}^{3} + 14T_{11}^{2} + 12T_{11} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$11$ \( T^{4} + 6 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$13$ \( T^{4} - T^{2} + 169 \) Copy content Toggle raw display
$17$ \( T^{4} - 8 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$19$ \( T^{4} + 12 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$23$ \( T^{4} + 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$29$ \( (T^{2} + 3 T + 9)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 104T^{2} + 2116 \) Copy content Toggle raw display
$37$ \( (T^{2} - 9 T + 27)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} - 12 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$43$ \( T^{4} + 14 T^{3} + \cdots + 484 \) Copy content Toggle raw display
$47$ \( T^{4} + 128T^{2} + 1024 \) Copy content Toggle raw display
$53$ \( (T^{2} + 10 T + 13)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} - 6 T^{3} + \cdots + 6084 \) Copy content Toggle raw display
$61$ \( T^{4} - 20 T^{3} + \cdots + 9409 \) Copy content Toggle raw display
$67$ \( T^{4} - 30 T^{3} + \cdots + 4356 \) Copy content Toggle raw display
$71$ \( (T^{2} - 24 T + 192)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 218 T^{2} + 11449 \) Copy content Toggle raw display
$79$ \( (T^{2} + 18 T + 54)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 216T^{2} + 2916 \) Copy content Toggle raw display
$89$ \( T^{4} - 12 T^{3} + \cdots + 576 \) Copy content Toggle raw display
$97$ \( T^{4} + 12 T^{3} + \cdots + 64 \) Copy content Toggle raw display
show more
show less