L(s) = 1 | − 2-s + 4-s + 4·5-s − 7-s − 8-s − 4·10-s − 11-s − 13-s + 14-s + 16-s − 6·19-s + 4·20-s + 22-s + 7·23-s + 11·25-s + 26-s − 28-s + 4·29-s + 7·31-s − 32-s − 4·35-s + 9·37-s + 6·38-s − 4·40-s + 3·41-s + 4·43-s − 44-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s + 1.78·5-s − 0.377·7-s − 0.353·8-s − 1.26·10-s − 0.301·11-s − 0.277·13-s + 0.267·14-s + 1/4·16-s − 1.37·19-s + 0.894·20-s + 0.213·22-s + 1.45·23-s + 11/5·25-s + 0.196·26-s − 0.188·28-s + 0.742·29-s + 1.25·31-s − 0.176·32-s − 0.676·35-s + 1.47·37-s + 0.973·38-s − 0.632·40-s + 0.468·41-s + 0.609·43-s − 0.150·44-s + ⋯ |
Λ(s)=(=(1638s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1638s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.650233464 |
L(21) |
≈ |
1.650233464 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 7 | 1+T |
| 13 | 1+T |
good | 5 | 1−4T+pT2 |
| 11 | 1+T+pT2 |
| 17 | 1+pT2 |
| 19 | 1+6T+pT2 |
| 23 | 1−7T+pT2 |
| 29 | 1−4T+pT2 |
| 31 | 1−7T+pT2 |
| 37 | 1−9T+pT2 |
| 41 | 1−3T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1+7T+pT2 |
| 53 | 1+pT2 |
| 59 | 1−10T+pT2 |
| 61 | 1−T+pT2 |
| 67 | 1−T+pT2 |
| 71 | 1+16T+pT2 |
| 73 | 1−5T+pT2 |
| 79 | 1−11T+pT2 |
| 83 | 1+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1+T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.382683634490519654764199003796, −8.842134311662064724454282147488, −7.943345217051475117643242740083, −6.72942118020662831970006205526, −6.37840271109207786796552495603, −5.49386334296658824475642157597, −4.55256625494296783763579353487, −2.85733179130965228288861874054, −2.28863422577859859560688974167, −1.03297262712619069700335338528,
1.03297262712619069700335338528, 2.28863422577859859560688974167, 2.85733179130965228288861874054, 4.55256625494296783763579353487, 5.49386334296658824475642157597, 6.37840271109207786796552495603, 6.72942118020662831970006205526, 7.943345217051475117643242740083, 8.842134311662064724454282147488, 9.382683634490519654764199003796