Properties

Label 1638.j
Number of curves $1$
Conductor $1638$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("j1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 1638.j1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 - 7 T + 23 T^{2}\) 1.23.ah
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1638.j do not have complex multiplication.

Modular form 1638.2.a.j

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 4 q^{5} - q^{7} - q^{8} - 4 q^{10} - q^{11} - q^{13} + q^{14} + q^{16} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 1638.j

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1638.j1 1638g1 \([1, -1, 0, 30, 98]\) \(4019679/8918\) \(-6501222\) \([]\) \(504\) \(-0.0085509\) \(\Gamma_0(N)\)-optimal