Properties

Label 2-162288-1.1-c1-0-142
Degree $2$
Conductor $162288$
Sign $-1$
Analytic cond. $1295.87$
Root an. cond. $35.9982$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 11-s + 6·13-s + 5·17-s + 6·19-s + 23-s − 5·25-s − 9·29-s − 6·31-s + 6·37-s − 6·41-s + 6·43-s − 11·47-s − 14·53-s + 2·61-s − 10·67-s − 3·71-s + 5·73-s − 5·79-s + 8·83-s + 10·89-s + 4·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.301·11-s + 1.66·13-s + 1.21·17-s + 1.37·19-s + 0.208·23-s − 25-s − 1.67·29-s − 1.07·31-s + 0.986·37-s − 0.937·41-s + 0.914·43-s − 1.60·47-s − 1.92·53-s + 0.256·61-s − 1.22·67-s − 0.356·71-s + 0.585·73-s − 0.562·79-s + 0.878·83-s + 1.05·89-s + 0.406·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162288\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1295.87\)
Root analytic conductor: \(35.9982\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162288,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 11 T + p T^{2} \) 1.47.l
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 5 T + p T^{2} \) 1.73.af
79 \( 1 + 5 T + p T^{2} \) 1.79.f
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.45760625171522, −13.08830841091905, −12.66416526972801, −11.88401151363191, −11.67592780037281, −11.07544144272003, −10.86326759368461, −10.07570845354132, −9.583149923856831, −9.299119766217654, −8.781968213470302, −8.031455480522122, −7.740694755733586, −7.353096928885410, −6.577596414664382, −6.044722323686115, −5.696335861816536, −5.216624253576169, −4.522037706753785, −3.732670232739507, −3.473143696348780, −3.082602533381398, −1.989396672308026, −1.489972926799600, −0.9871053527562070, 0, 0.9871053527562070, 1.489972926799600, 1.989396672308026, 3.082602533381398, 3.473143696348780, 3.732670232739507, 4.522037706753785, 5.216624253576169, 5.696335861816536, 6.044722323686115, 6.577596414664382, 7.353096928885410, 7.740694755733586, 8.031455480522122, 8.781968213470302, 9.299119766217654, 9.583149923856831, 10.07570845354132, 10.86326759368461, 11.07544144272003, 11.67592780037281, 11.88401151363191, 12.66416526972801, 13.08830841091905, 13.45760625171522

Graph of the $Z$-function along the critical line