L(s) = 1 | + (−0.5 + 0.866i)5-s + (−1 − 1.73i)7-s + (−1 + 1.73i)13-s − 3·17-s + 5·19-s + (−1.5 + 2.59i)23-s + (−0.499 − 0.866i)25-s + (3 + 5.19i)29-s + (−2.5 + 4.33i)31-s + 1.99·35-s + 2·37-s + (−6 + 10.3i)41-s + (−4 − 6.92i)43-s + (6 + 10.3i)47-s + (1.50 − 2.59i)49-s + ⋯ |
L(s) = 1 | + (−0.223 + 0.387i)5-s + (−0.377 − 0.654i)7-s + (−0.277 + 0.480i)13-s − 0.727·17-s + 1.14·19-s + (−0.312 + 0.541i)23-s + (−0.0999 − 0.173i)25-s + (0.557 + 0.964i)29-s + (−0.449 + 0.777i)31-s + 0.338·35-s + 0.328·37-s + (−0.937 + 1.62i)41-s + (−0.609 − 1.05i)43-s + (0.875 + 1.51i)47-s + (0.214 − 0.371i)49-s + ⋯ |
Λ(s)=(=(1620s/2ΓC(s)L(s)(−0.173−0.984i)Λ(2−s)
Λ(s)=(=(1620s/2ΓC(s+1/2)L(s)(−0.173−0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
1620
= 22⋅34⋅5
|
Sign: |
−0.173−0.984i
|
Analytic conductor: |
12.9357 |
Root analytic conductor: |
3.59663 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1620(1081,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1620, ( :1/2), −0.173−0.984i)
|
Particular Values
L(1) |
≈ |
0.9959256481 |
L(21) |
≈ |
0.9959256481 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.5−0.866i)T |
good | 7 | 1+(1+1.73i)T+(−3.5+6.06i)T2 |
| 11 | 1+(−5.5+9.52i)T2 |
| 13 | 1+(1−1.73i)T+(−6.5−11.2i)T2 |
| 17 | 1+3T+17T2 |
| 19 | 1−5T+19T2 |
| 23 | 1+(1.5−2.59i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−3−5.19i)T+(−14.5+25.1i)T2 |
| 31 | 1+(2.5−4.33i)T+(−15.5−26.8i)T2 |
| 37 | 1−2T+37T2 |
| 41 | 1+(6−10.3i)T+(−20.5−35.5i)T2 |
| 43 | 1+(4+6.92i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−6−10.3i)T+(−23.5+40.7i)T2 |
| 53 | 1+3T+53T2 |
| 59 | 1+(3−5.19i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−3.5−6.06i)T+(−30.5+52.8i)T2 |
| 67 | 1+(1−1.73i)T+(−33.5−58.0i)T2 |
| 71 | 1−12T+71T2 |
| 73 | 1+16T+73T2 |
| 79 | 1+(−0.5−0.866i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−7.5−12.9i)T+(−41.5+71.8i)T2 |
| 89 | 1+12T+89T2 |
| 97 | 1+(−8−13.8i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.658046576257505396066782608257, −8.894118974858806846509640377690, −7.922361300288781335385497222834, −7.08543005360257846533748695637, −6.66366405066513570604633639399, −5.51398481501151096020107827863, −4.56164670331893563799858427284, −3.63834738003612573374401987901, −2.77877919166242687809943407586, −1.33428248650444441071186419701,
0.39719415030826636888928434503, 2.06303190498852804834951384172, 3.07280062367362272739357168848, 4.13392715776059607618726701998, 5.11112619081516648838162756916, 5.84411902691293804897692935056, 6.74483944259291106520329136216, 7.67967462989094291475036555323, 8.405355951009289857382128446472, 9.188121844361043554238643821877