L(s) = 1 | + (−0.5 − 0.866i)5-s + (−1 + 1.73i)7-s + (−1 − 1.73i)13-s − 3·17-s + 5·19-s + (−1.5 − 2.59i)23-s + (−0.499 + 0.866i)25-s + (3 − 5.19i)29-s + (−2.5 − 4.33i)31-s + 1.99·35-s + 2·37-s + (−6 − 10.3i)41-s + (−4 + 6.92i)43-s + (6 − 10.3i)47-s + (1.50 + 2.59i)49-s + ⋯ |
L(s) = 1 | + (−0.223 − 0.387i)5-s + (−0.377 + 0.654i)7-s + (−0.277 − 0.480i)13-s − 0.727·17-s + 1.14·19-s + (−0.312 − 0.541i)23-s + (−0.0999 + 0.173i)25-s + (0.557 − 0.964i)29-s + (−0.449 − 0.777i)31-s + 0.338·35-s + 0.328·37-s + (−0.937 − 1.62i)41-s + (−0.609 + 1.05i)43-s + (0.875 − 1.51i)47-s + (0.214 + 0.371i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9959256481\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9959256481\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
good | 7 | \( 1 + (1 - 1.73i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1 + 1.73i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 3T + 17T^{2} \) |
| 19 | \( 1 - 5T + 19T^{2} \) |
| 23 | \( 1 + (1.5 + 2.59i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3 + 5.19i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.5 + 4.33i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 2T + 37T^{2} \) |
| 41 | \( 1 + (6 + 10.3i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4 - 6.92i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-6 + 10.3i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 3T + 53T^{2} \) |
| 59 | \( 1 + (3 + 5.19i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.5 + 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1 + 1.73i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 12T + 71T^{2} \) |
| 73 | \( 1 + 16T + 73T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-7.5 + 12.9i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 12T + 89T^{2} \) |
| 97 | \( 1 + (-8 + 13.8i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.188121844361043554238643821877, −8.405355951009289857382128446472, −7.67967462989094291475036555323, −6.74483944259291106520329136216, −5.84411902691293804897692935056, −5.11112619081516648838162756916, −4.13392715776059607618726701998, −3.07280062367362272739357168848, −2.06303190498852804834951384172, −0.39719415030826636888928434503,
1.33428248650444441071186419701, 2.77877919166242687809943407586, 3.63834738003612573374401987901, 4.56164670331893563799858427284, 5.51398481501151096020107827863, 6.66366405066513570604633639399, 7.08543005360257846533748695637, 7.922361300288781335385497222834, 8.894118974858806846509640377690, 9.658046576257505396066782608257