L(s) = 1 | + (1.92 + 1.51i)2-s + (−0.261 + 0.367i)3-s + (0.941 + 3.88i)4-s + (−1.46 + 0.281i)5-s + (−1.06 + 0.311i)6-s + (−2.01 − 1.70i)7-s + (−2.02 + 4.43i)8-s + (0.914 + 2.64i)9-s + (−3.24 − 1.67i)10-s + (4.03 − 3.17i)11-s + (−1.67 − 0.670i)12-s + (5.59 − 3.59i)13-s + (−1.30 − 6.34i)14-s + (0.279 − 0.611i)15-s + (−3.52 + 1.81i)16-s + (−1.75 − 1.66i)17-s + ⋯ |
L(s) = 1 | + (1.36 + 1.07i)2-s + (−0.151 + 0.212i)3-s + (0.470 + 1.94i)4-s + (−0.654 + 0.126i)5-s + (−0.432 + 0.127i)6-s + (−0.763 − 0.645i)7-s + (−0.716 + 1.56i)8-s + (0.304 + 0.880i)9-s + (−1.02 − 0.528i)10-s + (1.21 − 0.956i)11-s + (−0.483 − 0.193i)12-s + (1.55 − 0.997i)13-s + (−0.347 − 1.69i)14-s + (0.0721 − 0.157i)15-s + (−0.880 + 0.453i)16-s + (−0.424 − 0.404i)17-s + ⋯ |
Λ(s)=(=(161s/2ΓC(s)L(s)(−0.102−0.994i)Λ(2−s)
Λ(s)=(=(161s/2ΓC(s+1/2)L(s)(−0.102−0.994i)Λ(1−s)
Degree: |
2 |
Conductor: |
161
= 7⋅23
|
Sign: |
−0.102−0.994i
|
Analytic conductor: |
1.28559 |
Root analytic conductor: |
1.13383 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(100,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 161, ( :1/2), −0.102−0.994i)
|
Particular Values
L(1) |
≈ |
1.28752+1.42722i |
L(21) |
≈ |
1.28752+1.42722i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(2.01+1.70i)T |
| 23 | 1+(4.13+2.43i)T |
good | 2 | 1+(−1.92−1.51i)T+(0.471+1.94i)T2 |
| 3 | 1+(0.261−0.367i)T+(−0.981−2.83i)T2 |
| 5 | 1+(1.46−0.281i)T+(4.64−1.85i)T2 |
| 11 | 1+(−4.03+3.17i)T+(2.59−10.6i)T2 |
| 13 | 1+(−5.59+3.59i)T+(5.40−11.8i)T2 |
| 17 | 1+(1.75+1.66i)T+(0.808+16.9i)T2 |
| 19 | 1+(4.76−4.54i)T+(0.904−18.9i)T2 |
| 29 | 1+(3.87−1.13i)T+(24.3−15.6i)T2 |
| 31 | 1+(1.22−0.116i)T+(30.4−5.86i)T2 |
| 37 | 1+(0.215+0.622i)T+(−29.0+22.8i)T2 |
| 41 | 1+(0.187+0.216i)T+(−5.83+40.5i)T2 |
| 43 | 1+(0.936+2.04i)T+(−28.1+32.4i)T2 |
| 47 | 1+(−3.09+5.35i)T+(−23.5−40.7i)T2 |
| 53 | 1+(0.199−4.18i)T+(−52.7−5.03i)T2 |
| 59 | 1+(0.755+0.389i)T+(34.2+48.0i)T2 |
| 61 | 1+(−5.51−7.74i)T+(−19.9+57.6i)T2 |
| 67 | 1+(−2.12+0.852i)T+(48.4−46.2i)T2 |
| 71 | 1+(−1.78+12.3i)T+(−68.1−20.0i)T2 |
| 73 | 1+(−0.738−3.04i)T+(−64.8+33.4i)T2 |
| 79 | 1+(0.00251+0.0528i)T+(−78.6+7.50i)T2 |
| 83 | 1+(4.18−4.82i)T+(−11.8−82.1i)T2 |
| 89 | 1+(5.34+0.510i)T+(87.3+16.8i)T2 |
| 97 | 1+(−9.58−11.0i)T+(−13.8+96.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.44183973183833374569314884003, −12.54595552509602636052692813132, −11.35270031566691023831846959655, −10.42577295340623079782697730883, −8.558764345204106602572228070240, −7.64169060800788805479060554527, −6.46355786833951885982459230387, −5.74517383353352792415677352528, −4.03204978482297457595226411379, −3.65086791590542915551626357582,
1.84293384230217039764859118603, 3.76378036614209192194091357211, 4.20672916733194856547963347659, 6.10120930579645407258255972457, 6.67803170338506635062232091846, 8.858428822026022097297610855904, 9.754805528894548042556769534892, 11.29048129619331070588223219647, 11.72893180805479263932604830396, 12.59456610394135128107431358334