Properties

Label 2-161-161.100-c1-0-2
Degree $2$
Conductor $161$
Sign $0.978 + 0.207i$
Analytic cond. $1.28559$
Root an. cond. $1.13383$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.42 − 1.11i)2-s + (−0.659 + 0.925i)3-s + (0.301 + 1.24i)4-s + (2.15 − 0.415i)5-s + (1.97 − 0.579i)6-s + (−1.48 + 2.19i)7-s + (−0.542 + 1.18i)8-s + (0.558 + 1.61i)9-s + (−3.52 − 1.81i)10-s + (4.13 − 3.25i)11-s + (−1.34 − 0.540i)12-s + (2.70 − 1.74i)13-s + (4.56 − 1.46i)14-s + (−1.03 + 2.26i)15-s + (4.37 − 2.25i)16-s + (2.17 + 2.07i)17-s + ⋯
L(s)  = 1  + (−1.00 − 0.791i)2-s + (−0.380 + 0.534i)3-s + (0.150 + 0.621i)4-s + (0.963 − 0.185i)5-s + (0.806 − 0.236i)6-s + (−0.559 + 0.828i)7-s + (−0.191 + 0.419i)8-s + (0.186 + 0.538i)9-s + (−1.11 − 0.575i)10-s + (1.24 − 0.981i)11-s + (−0.389 − 0.155i)12-s + (0.751 − 0.482i)13-s + (1.21 − 0.390i)14-s + (−0.267 + 0.585i)15-s + (1.09 − 0.563i)16-s + (0.528 + 0.503i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.978 + 0.207i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.978 + 0.207i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(161\)    =    \(7 \cdot 23\)
Sign: $0.978 + 0.207i$
Analytic conductor: \(1.28559\)
Root analytic conductor: \(1.13383\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{161} (100, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 161,\ (\ :1/2),\ 0.978 + 0.207i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.714624 - 0.0748209i\)
\(L(\frac12)\) \(\approx\) \(0.714624 - 0.0748209i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (1.48 - 2.19i)T \)
23 \( 1 + (-2.78 - 3.90i)T \)
good2 \( 1 + (1.42 + 1.11i)T + (0.471 + 1.94i)T^{2} \)
3 \( 1 + (0.659 - 0.925i)T + (-0.981 - 2.83i)T^{2} \)
5 \( 1 + (-2.15 + 0.415i)T + (4.64 - 1.85i)T^{2} \)
11 \( 1 + (-4.13 + 3.25i)T + (2.59 - 10.6i)T^{2} \)
13 \( 1 + (-2.70 + 1.74i)T + (5.40 - 11.8i)T^{2} \)
17 \( 1 + (-2.17 - 2.07i)T + (0.808 + 16.9i)T^{2} \)
19 \( 1 + (-0.648 + 0.617i)T + (0.904 - 18.9i)T^{2} \)
29 \( 1 + (-4.62 + 1.35i)T + (24.3 - 15.6i)T^{2} \)
31 \( 1 + (9.86 - 0.942i)T + (30.4 - 5.86i)T^{2} \)
37 \( 1 + (0.733 + 2.11i)T + (-29.0 + 22.8i)T^{2} \)
41 \( 1 + (-6.26 - 7.23i)T + (-5.83 + 40.5i)T^{2} \)
43 \( 1 + (0.00349 + 0.00765i)T + (-28.1 + 32.4i)T^{2} \)
47 \( 1 + (4.50 - 7.80i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-0.474 + 9.95i)T + (-52.7 - 5.03i)T^{2} \)
59 \( 1 + (5.69 + 2.93i)T + (34.2 + 48.0i)T^{2} \)
61 \( 1 + (2.62 + 3.68i)T + (-19.9 + 57.6i)T^{2} \)
67 \( 1 + (1.71 - 0.685i)T + (48.4 - 46.2i)T^{2} \)
71 \( 1 + (-2.37 + 16.5i)T + (-68.1 - 20.0i)T^{2} \)
73 \( 1 + (-0.623 - 2.56i)T + (-64.8 + 33.4i)T^{2} \)
79 \( 1 + (-0.559 - 11.7i)T + (-78.6 + 7.50i)T^{2} \)
83 \( 1 + (-4.07 + 4.69i)T + (-11.8 - 82.1i)T^{2} \)
89 \( 1 + (3.25 + 0.311i)T + (87.3 + 16.8i)T^{2} \)
97 \( 1 + (3.04 + 3.51i)T + (-13.8 + 96.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.61661820232391351306352637277, −11.38536836306160506536128737219, −10.81464093820611047436181010258, −9.633478241680483175750362400278, −9.270756014285484590211702686124, −8.182414688737405239161394167396, −6.11370043722142014154529048901, −5.44292869224371995534088444098, −3.31120638797342206677867698079, −1.58323130784852748233819378285, 1.25037358023856603031010923515, 3.86243033979875722887584513068, 6.02963077257583866809900727909, 6.77544566141063097332934540082, 7.30874179410672001461174927592, 9.041027818819889816461145689129, 9.560213445692024731159157694722, 10.51662003906684958351131478505, 12.04613039992410764190821030622, 12.87161799928844202470677426961

Graph of the $Z$-function along the critical line